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Dr. Dvorak was born and educated in Prague, Czechoslo-

ASME 1992 Nadai Lecture—
Micromechanics of Inelastic
Composite Materials: Theory and
Experiment

Some recent theoretical and experimental results on modeling of the inelastic behavior
of composite materials are reviewed. The transformation field analysis method
(G. J. Dvorak, Proc. R. Soc. London, Series A437, 1992, pp. 311-327) is a general
procedure for evaluation of local fields and overall response in representative volumes
of multiphase materials subjected to external thermomechanical loads and trans-
formations in the phases. Applications are presented for systems with elastic-plastic
and viscoelastic constituents. The Kroner-Budiansky-Wu and the Hill self-consistent
models are corrected to conform with the generalized Levin formula. Recent ex-
perimental measurements of yield surfaces and plastic strains on thin-walled boron-
aluminum composite tubes are interpreted with several micromechanical models.
The comparisons show that unit cell models can provide reasonably accurate pre-
dictions of the observed plastic strains, while models relving on normality of the
plastic strain increment vector to a single overall yield surface may not capture the
essential features of the inelastic deformation process.

in metals. He started to work in mechanics of composite ma-
terials in the late 1960’s. In this field, he developed several
theoretical models of plasticity of composite materials, applied
them to problems in fatigue and fracture of fibrous metal
matrix laminates, and directed experimental studies to support
predictions of the theoretical models. His other interests in-
clude damage development in britile and ductile systems, ther-
mal stresses and heat conduction in coated fiber composites,
and modeling of fabrication processes in ductile intermetallic
matrix composites. Among his significant recent achievements
is the formulation of the uniform field technique for hetero-
geneous solids, the transformation field method described, in
part, in the Nadai Award Paper. He is also credited with finding
many exact results in micromechanics, and with correcting
some errors in heuristic micromechanical models. After hold-
ing teaching positions at Duke University and The University
of Utah, Dr. Dvorak is now Head of the Civil and Environ-
mental Engineering Department at Rensselaer, where he also
directs an ARPA/ONR sponsored URI project on mechanism-
based design of high-temperature composite materials.
George J. Weng

1 Introduction

vakia. In 1964 he joined the solid mechanics group at Brown
University, where he studied with D. C. Drucker. His initial
research interests were in modeling of mechanisms of fracture

Contributed by the Materials Division for publication in the JOURNAL OF
ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received by the Mate-
rials Division July 19, 1993.

Journal of Engineering Materials and Technology

This paper provides a brief summary of some recent results
in inelastic analysis of heterogeneous media and composite
materials. Both theoretical and experimental aspects are ex-
plored. In the theoretical part, we diséuss the transformation
field analysis method for incremental solution of thermome-
chanical loading and eigenstrain problems, which was recently
introduced by Dvorak (1991, 1992). When used with a selected
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micromechanical model, the analysis provides piecewise uni-
form approximations of the instantaneous local strain and
stress fields in the phases, and estimates of the overall instan-
taneous thermomechanical properties of representative vol-
umes of composite materials consisting of elastic-plastic,
viscoelastic, or viscoplastic phases. The method incorporates
many of the currently used approaches to problems of this
kind as special cases, this is shown for unit cell models, the
Mori-Tanaka and the self-consistent methods, as well as for
other methods that utilize the Eshelby solution. The experi-
mental part focuses on detection of yield surfaces and plastic
strains in unidirectionally reinforced boron-aluminum tubes
subjected to incremental loading in axial tension, torsion and
internal pressure. Interpretation of the experimental results
with several theoretical models shows that the observed shape
and position of the yield surfaces is well predicted by the
bimodal plasticity theory of Dvorak and Bahei-El-Din (1987),
and the plastic strains are reasonably well approximated by
the periodic hexagonal array unit cell model of Teply and
Dvorak (1988). The experimentally found overall yield surface
is shown to be a locus of yield vertices, where the plastic strain
increments are confined within a cone of normals. Therefore,
theories based on normality to a single yield surface are bound
to be of little value in predicting the observed response.

Section 2 contains definitions of local and overall properties
and of the eigenstress and eigenstrain influence functions and
concentration factors that form a foundation for the trans-
formation analysis of micromechanical models. Section 3 shows
the formulation leading to the governing equations for local
stress and strain fields in composites with elastic-plastic and
viscoelastic phases. Section 4 discusses corrections of certain
shortcomings in the Kroner-Budiansky-Wu (KBW), and Hill
(1963) self-consistent models that are indicated by the for-
mulation of the transformation method. Section 5 surveys the
bimodal theory and the periodic hexagonal array model that
are used in §6 to interpret the experimental results.

The notation used is fashioned after that introduced by Hill
(1963); (6 X 1) vectors are denoted by boldface lower case Ro-
man or Greek letters (6 X 6) matrices by boldface uppercase
Roman letters, and AA~' = A™!A = I, if the inverse exists.
Scalars are denoted by lightface letters. Script characters are
reserved for quantities that change during deformation. Vol-
ume averages of fields in V,, such as A,(x) or ¢(x) or of a(x)
in V are denoted by A,, ¢ or o.

2 Overall and Local Fields

Consider a representative volume V of a heterogeneous me-
dium of any microgeometry, e.g., that found in a polycrystal,
fiber or particulate composite, or laminated plate or shell. The
medium consists of two or more perfectly bonded homoge-
neous or homogenized elastic phases residing in several local
volumes V, (r = 1, 2, ... N), none containing more than one
phase. The geometry of the heterogeneous microstructure is
given or assumed to be represented by a certain microme-
chanical model, such as a unit cell model of a periodic or
random microstructure, or the self-consistent and Mori-Tan-
aka models. In the SCM or M-T models, V, would refer to
usually ellipsoidal inhomogeneities of one phase. In the unit
cell models of composites or polycrystals, and in several models
of laminated plates or shells which regard the composite struc-
ture as consisting of homogeneous layers with certain effective
properties, the local fields are typically found with the finite
element method. In such models, V, would designate a single
constant strain element, or a volume associated with an in-
tegration point in a higher order element.

At any given time ¢, the volume V is subjected to certain
homogeneous boundary conditions on the surface S of V,

u(S)=€()x  t(S)=6°(t)n, 8
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where ¢° and €® denote uniform overall stress and strain derived
from prescribed tractions t(S) and displacements u(S), de-
fined in cartesian coordinates x.

In addition to (1), the representative volume may be
subjected to certain local eigenstrain and eigenstress fields in
V.eV,

w0 =e(x,1) +m, 60+ ... M(x,t) =0(x,1) +66°+ . ..

@
where €/ is an inelastic strain caused in V, during previous
loading steps, and ¢;° the corresponding relaxation stress that
would be created by ¢," at a fully constrained material point
X; m, is the thermal strain tensor containing the coefficients
of thermal expansion of the phase residing in V,, £ is the
associated thermal stress tensor, and §° a prescribed uniform
change in temperature. Additional contributions in (2) may be
provided by such sources as swelling associated with moisture
adsorption or diffusion, and by shape and volume changes
produced by a phase transformation. While the fields (2) are,
in general, independent of the current applied loads or dis-
placements (1), and of each other, they have to be compatible
with (1) in the sense that each component of (2) must produce
a uniform overall eigenstrain in V under t(S) = 0, and a
uniform overall eigenstress under u(S) = 0. For example, the
inelastic fields €] and o7 would result from a certain history
of uniform overall deformation of V, and the thermal fields
from a uniform change of temperature in V.

In what follows, the local eigenstrains and eigenstresses will
be referred to jointly as transformation fields, and regarded
as deformations or loads imposed in addition to but inde-
pendently of (1) on an otherwise elastic heterogeneous solid.

At small total strains, one may assume that the total local
fields caused in the local volumes r = 1, 2, ... N, by the loads
(1) and transformations (2) can be additively decomposed as

&(X,t) =M, o, (x,t) + p(x,1), 0,x,t)=L,e(x,0) +AAx,1),

3)
where the L, and M, = L] ! are the elastic stiffness and com-
pliance tensors of the phase within V,. The p.(x, t) represent
that part of the total local strain not caused by stress-induced
elastic deformation, and AJ(x, ¢) that part of the total stress
not related to the total local strain. Since the eigenstrain leaves
an unconstrained volume V, free of stress, one finds that for
e =0,0rfore, =0,

A,-(X,t) = —L,-[L,(X,t) l‘-r(xvt) = -"M,A,(X,[). (4)

The local fields caused in V by the purely mechanical, uni-
form overall strains and stresses (1) may be evaluated using
certain mechanical influence functions suggested by Hill (1963),

e (x,2) = A (X)E(1)  a{x,t) =B,(x)o"(?). )

These can be found from an elasticity solution of a selected
micromechanical model of the heterogeneous material in V,
and are thus assumed to be known.

The local fields caused by the transformation (2) are the
residual fields that are present in ¥ even if the overall applied
strain or stress in (1) and (5) vanish; their evaluation has been
discussed in some detail by Dvorak and Benveniste (1992). Of
particular interest here is the response of the elastic hetero-
geneous medium both to piecewise uniform transformations
u-{1), A(1) in the local volumes V,, e.g., those induced by a
uniform change in temperature or by a phase transformation,
and to nonuniform transformation fields that may be induced
in V,, for example, by inelastic deformation. In the latter case,
the subdivision of the individual phases into local volumes V.,
must be sufficiently refined, so that the actual transformation
fields (2) can be approximated by piecewise uniform distri-
butions u,.(2), A.(¢). In either case, the residual fields are
considered as caused by a piecewise uniform distribution or
approximation of (2), and are sought in the form
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N N
&0 =D Da(x)ps() afxi1) = D F(x)N (1), (6)

s=1 s=1

The D,(x) and F,(x) are the transformation influence func-
tions (Dvorak, 1990), which may be derived either in terms of
the Green’s function of a certain comparison homogeneous
medium, or from the same micromechanical models that one
would use to find the mechanical influence functions in (5),
under the homogeneous boundary conditions ¢ = 0 and o°
= 0, respectively; (Dvorak and Benveniste, 1992). For ex-
ample, in two-phase media, with r = «, 8, there are exact
connections involving phase properties and the mechanical
influence functions (Dvorak 1990, Egs. 123-126)

D.=(I-A)L,-L) 'Ly D=-(I-A)L.~Ls) 'L;
Fo=(-B)M.-M3) "M, Fg=-(1-B)M,-My) 'M,.
(7)
In multiphase solids, the mechanical influence functions in
(5) are often replaced by their phase volume averages, the
mechanical strain and stress concentration factors A, and B,.
Similarly, the transformation influence functions D,(x) and
F(x) in (6) are replaced by their volume averages D, and F.,
taken over V,. If the A, and B, are estimated from either the
self-consistent or Mori-Tanaka models, then Dvorak and Ben-
veniste (1992 Eq. 59) show that the respective estimates of the
D, and F,, are given by the exact connections

D,=(I-A)L -L) '@~ cADL,
-1 7. r,S=l,2...N
Frs = (l - Br)(Mr - M) (5rsl - C:B: )Ms, (8)

here the ¢; = V,/V are the phase volume fractions, and L, M
designate the respective estimates of the overall stiffness and
compliance tensors; §, is the Kronecker symbol, but no sum-
mation is implied by the repeated subscripts.

Evaluation of the mechanical and transformation concen-
tration factor tensors in unit cell models has been discussed
by Dvorak et al. (1993). In particular, the kth column of the
D,; matrix for any two elements V, and V; of a unit cell was
found as

d =B,PK"'f,, )

where the local strains e are related to the overall displacements
u by ¢, = B,P;u, K is the overall stiffness matrix, and f, is the
overall load vector corresponding to the eigenstrain g,.

Dvorak and Benveniste (1992 Egs. 47-50) show that re-
gardless of the evaluation method, the transformation influ-
ence functions F, and D, must comply with the exact
connections

N N
2 D®=1-A,x) > F.(x)=I-B,x)
r=1 r=1}

N
> Fu(L, =0
r=1

N
> Da(x)M, =0
r=1

DM, = C,M,D,T; oF, L = C,LSFZ;

N

N
> aDy=0 > ¢ Fy=0. (10)
r=1

r=1

One can easily verify that (10) are satisfied when the trans-
formation influence functions are evaluated from (7); this has
to be carried out numerically if the functions are found from
(9)- The estimates (8) comply with (10) for two-phase systems
and in multiphase systems that consist of or are reinforced by
inhomogeneities of the same shape and alignment, and thus
admit only a single constraint tensor L™ or M” (see (41) be10w)
Such comphance does not obtain in systems with multiple L*
or M™. Benveniste et al. (1991} show that the self-consistent
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and Mori-Tanaka methods do or do not yield diagonally sym-
metric estimates of L under similar circumstances.

Note that the concentration factor tensors A,, B,, D,, and
F,, follow from solutions of certain elasticity problems, and
thus depend only on the elastic moduli L,, and on the overall
and local geometry. As long as those remain constant under
the loading conditions (1) and (2), so do the concentration
factor tensors. (Of course, if the L, change, e.g., as functions
of temperature, then the concentration factors may need to be
reevaluated.) Under such circumstances, the fields (3) and (6)
may be superimposed, and the volume averages of the fields
generated in each local volume V, within the representative
volume V by the loadings (1) and (2) may be written as

N
(1) = A +ZD”/A(I) o,(1)=B,o’(1) +ZF,:A,<1>.

s=1 =

an

Since the coefficients are constant, one may readily write
the corresponding relations for the local strain and stress rates
as

N N .
(AN =AE0(1) + D) D) 6:(1)=Ba"(0) + 3 Fik, (1),

s=1 s=1

(12)

Note that (11) and (12) represent three distinct fields that
coexist in the heterogeneous solid under the loading conditions
(1)) and (2)) or (1,) and (2,): One in response to overall uniform
strain or stress, the residual field caused by the transforma-
tions, and the transformation strain or stress field itself. The
first and the sum of the last two must comply with compatibility
and equilibrium requirements. However, the eigenstrain and
eigenstress fields themselves are not expected to meet such
requirements, particularly at interfaces between phases or the
V., subvolumes. It is also of interest to note that if (11)) is
applied to the fields caused by a transformed homogeneous
inclusion of ellipsoidal shape in an infinite homogeneous solid,
then the self-induced strain in V,is ¢, = D,, g, = Sp,, and D,,
= §, the Eshelby tensor.

Turning our attention to the overall fields, we record here
the relations between the local and overall total stresses and
strains (Hill, 1963)

e(l)=S e(x,1)dV u(t)=§ a.(x,1)dV. (13)
v v

These are valid for any representative volume V subjected to
the boundary conditions (1) and/or transformations (2).

However, if (2) are applied in addition to (1), the transfor-
mation fields cause independent contributions to the total over-
all strain or stress. If V' is free of external tractions, then the
local eigenstrains uA{x, ?) cause an overall eigenstrain u(7),
and, if V is fully constrained then the local eigenstresses
AAx, t) cause an overall eigenstress A(¢). We recall that to be
admissible in (2), each of the local transformation fields should
produce a uniform contribution to the respective overall field.
In such circumstances, the local and overall transformation
fields are connected by the Levin (1967) formula, generalized
by Rice (1970) and Hill (1971), and derived by Dvorak (1991),
and Dvorak and Benveniste (1992) in the form

u(t)=g B/ (x)u(x.0)dV >\(z)=g ATON (x,ndV.  (14)
14 14

The overall response of the material within V 10 (1) and (2)
then follows from the constitutive relations

e(N=Ma(1)+u(r) o()=Le(r) +A(1), (135
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where L and M = L~ are the overall elastic stiffness and
compliance tensors.

Since the L and M are constant, (15) provide an analogous
relation for the overall rates as

e(D=Ma()+p(1) a(=Le()+A).  (16)

This may be compared with the more frequently used rate
relations

(N =Ma(r)+mb (1) o()=Le(r)+0(r), (17)

where £ and 9 = £ ' are the instantaneous overall stiffness
and compliance tensors of the heterogeneous material in V,
and {, m, are the instantancous thermal stress and strain ten-
sors, represented typically by (6 x6) and (6 x 1) arrays, re-
spectively. Since the instantaneous tensors reflect the presence
of inelastic straining, they change during deformation. Their
evaluation involves a total of 21 + 6 = 27 coefficients and is
often quite difficult. In contrast. the L and M in (13), (16) can
be found relatively easily by several homogenization methods,
and remain constant. This reduces the evaluation of the in-
stantaneous response to finding the (6x 1) array of overall
eigenstrains u (), or eigenstresses A(7) = —~Lu(?). Of course,
if some of the local transformations (2) are known, e.g., under
a thermal change, then (15) readily provide corresponding con-
tributions to the desired x(7) and A(r).

3 The Transformation Field Analysis Method

Here we consider any of the composite materials discussed
in §1, but allow for inelastic deformation of one or more
phases. The response of the constituents may be described, for
example, by certain constitutive relations that reflect elastic-
plastic, viscoelastic and viscoplastic behavior. In general, each
phase may exhibit a different type of inelastic response, pro-
viding that all conform with the additive decomposition of the
total local strains and stresses indicated by (3). The goal is to
extend the Eqs. (11) and (12) for the local fields under known
overall and transformation loads and their rates into systems
for evaluation of such fields during local inelastic deformation.
Once the local fields are known, one can find the local inelastic
strains and relaxation stresses from (2) and (3), and then em-
ploy (13) or (14) and (15) to find the overall instantaneous
response.

First, (2) are converted to volume averages over V, and used
in (11) and (12), to separate the parts of u,.(¢) and A, (¢) that
depend on known quantities, such as m,8° and £6°, from the
€7 (1) and o7 (1) that depend on the as yet unknown local stress
or strain history. The thermal contributions can be written as
(Dvorak and Benveniste, 1992, Eq. 76)

N N ’
a,=>,Dm,, b=> Fit. (18)
s=1 s=]
After rearrangement, (11) and (12) become
N
(1) = > D€l (1) = A (1) +2,6°
s=1
N
0:(1) = D Fro? (1) =B,0% (1) + b,6°, (19)
s=1
and
N . .
()= 2 DM () =AE (1) +2,6°(0)
s=1
N .
a(0) = D (1) =B.a°(1) +b,6°(0). (20)

s=1

Next, the local constitutive relations are introduced to ex-
press the local inelastic strains and their rates in terms of Jocal
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stresses or stress rates. Similarly, the local relaxation stresses
are written as functions of the local strains or strain rates. This
provides governing equations for evaluation of the total local
fields. The procedure is best illustrated by examples involving
different types of phase response.

3.1 Elastic-Plastic Phases. The phases are assumed to be
inviscid, hence one can adopt an arbitrary time scale and write
the local constitutive relations for the total rates as in (17)

(=M, a,(1) +m,0°() o,(1)=Le.(1)+E8°%10), (1)
where M, = £7', and m, = — £, ¢, are the instantaneous
mechanical and thermal compliance and stiffness tensors; they
depend both on the current state at ¢, and on the past history.

The inelastic rates follow from

) = Mo, (1) ~mP%(1) (D) =876, (1) +076%0).

(22
where
MP=9,-M, £°=£,-L,
mf=m—-m, = £-0.
Moreover, we recall from (4) and (2) that
ef()= L&l () €f(N=-Mar(n).  (23)

Now, substitute (22,) into (23,) and use the result to replace
the relaxation stress terms in (19-) and (20.). An analogous
sequence provides an expression for the inelastic strains in (19;)
and (20,). For the composite material with elastic-plastic phases,
this leads to the following systems of governing equations that
must be satisfied by the local increments at each point ¢ of the
thermomechanical loading path,

N N .
b1+ D F LMo, =B,o"+ <b,— > F,,L,mf) 6°

s=1 s=1

N N .
oI + Z DrsMﬂcfész Aréo'*’ <ar— Z Dr:Ms£f> 00-

s=1 s=1
(24)

where §5 is the Kronecker’s symbol, but no summation is
implied by repeated subscripts. .

The solution of the governing equations is usually sought

in the form

7,=®,5°+8,6° &,=Qe'+qa8° (25)
where ®,, 6, and @,, a, are the instantaneous mechanical and
thermal concentration factor tensors.

For example, in a two-phase system, r, § = «, 8, under a
history of uniform overall stress applied through certain trac-
tions at the surface S of V, and uniform temperature change
in V¥, one can solve (24,) and find the instantaneous stress
concentration factors as

(Ba= [I+FaaLamg_ (CQ/CS)FGBLSW“;]—]
X [Ba - (I/Cg)FagL@mZg]

8,=[1+FooL I — (co/cs)FpLsoME "

X [bg = FaaLa"‘g - FQB LB”‘Z] . (26)

Similar expressions follow for ®; and 85 by exchange of sub-
scrips.

In the general case of many phases or subvolumes 7, s = 1,
2, ... N, the instantaneous concentration factors follow from
(24) in matrix notation as

®, = [diag (T)+ [F;L,97]) " '[B],

{8, = [diag (I)+ [F,L, 921" '{ {b,} — {F,Lim}?] (27)
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@, = [diag (1) + [D LML) (A,

{a,=[diag (I) + [DsM,£2]) " '{ (a,] - (D M,8}2}.  (28)
The instantaneous overall response of the selected system
may be then found in two different ways. One approach em-
ploys the connections (13) between local and overall total strains
and stresses. In particular, we recall that for § = 0, (14), (16)
and (20) imply the following relations for the overall and local
‘strain rates at any point of the overall loading path,

e‘=Mo

e;=M,o,

e=Mo

e, =M,a,,

(29)
(30)

where we assume that the local fields in V, remain uniform’

during the entire deformation history. Now, write the local
stresses as in (3) and (25). and use (3) and (21) to obtain

ei=M,B,d &,=M 8,0, 31
where M,, B, and 9,, ®, are the instantaneous local compli-
ances and stress concentration factors, respectively; ¢ denotes

the overall stress rate. Next, employ the relation between the
local and overall total strain averages that follow from (13) as

N
€= E cr.fh
r=1

where ¢, denote the volume fractions V,/V. Then substitute
from (31) and (29) to find the overall instantaneous compli-
ances as

(32

N N
M= c¢MB, =73 M,

r=1 r=1

(33)

Another approach to evaluation of the overall properties is
indicated by the generalized Levin’s (1967) formula (14) for
the local and overall transformation fields, and by the overall
constitutive relations (15). For the averages of the inelastic
strains, (14) provides

N
e"=> cBlel

r=1

Recalling that ¢ = ¢ — €% and ¢ = ¢, — &, one can

find from (29)-(31) and (34) that

N
M=M+ Y, ¢,BI(IM, - M)®,.

r=1

(35

Note that the elastic M follows only from (33;), but the
instantaneous 9N is given by both (33,) and (35). Since the ¢,,
B, and M, are constant, and IR, depends on the local defor-
mation history, the evaluation of the instantaneous stress con-
centration factor ®, must be subjected to certain conditions
that guarantee that (33;) and (35) provide a unigue evaluation
of the instantaneous overall compliance M. 1t can be verified
that the results (27) satisfy this requirement, providing of course
that the transformation concentration factor tensors comply
with (10). For example, in a two-phase system, one can solve
(33,) and (35) for one of the local ®, and recover after some
manipulation the expression given in (26,), (Dvorak 1992, Ap-
pendix).

3.2 Viscoelastic Phases. Another example can be given
for a composite consisting of viscoelastic phases, which exhibit
time-dependent deformation. In this case, we assume that an
overall history of uniform overall strain is applied by imposing
certain surface displacements at Sof V, together with a uniform
temperature change history within V. The phase constitutive
equations are written in the usual form (Christensen, 1971),
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but adjusted here to provide the expression for the relaxation
stress
G, (t—-7)

dr—L,e (1).

! de, (1)
dr (36)

o (1) = S
Y
The assumption is that the phases are thermorheologically
simple, so that any effect of temperature on the relaxation
functions G,{¢ — 7) could be accounted for by replacing the
time variable by a new variable that depends both on time and
a temperature dependent shift function.
For a local deformation history starting frome = 0 at ¢t =
0, (36) can be differentiated with respect to time. The result
is then used to find the rate of relaxation stress as

!

C,(I—T)f,(l)df.

2

a1 =a.(0) =L &.(1) =G0 (1) + S

37
Then, (19;) and (20,) are rewritten using (23) as
N
(1) + 2 DMoi (1) = A (1) +2,6°(1)
s=1
N -
(1) + Y, DMsai (1) = A () +2,6°(0).  (38)

s=1

After substitution from (36) and (37), one finds the systems
of governing equations for both the total strain and strain
rates. The outcome is self-evident.

As a specific application, we consider a two-phase system
= @, B. Since (13) provides the connections e = C,e, + Cpég,
it is sufficient to evaluate the local fields in only one phase.
Note also that the last relation (10) indicates that ¢, Doo +
¢gDg, = 0. Then, for the phase r = §, one can find from
(36)-(38) the following relations for the local strain and strain
rate .

4

GB(I— T)eg(7)dT
- Qe%(1) - 0:6°)

Qléa(t)=ﬂzég(l)+93 S
0

]

Q|63(1)=ﬂ3 S Gg(t—‘r)éﬂ(‘f)q'T;Qaéo([)—9500([), (39)

0

where
@ =Dgo+ (¢5/¢)Dsga
0, = 2:G5(0)
= (DgaDaog — DaeDss)5(0)
Q4=Dg.(A,— 1/c) =D, Ap
Qs =Dg.a, — D,oa5.

For any number of phases, the governing equations are
solved under the initial conditions ¢, = 0, 8° = Qatr = 0,
under the boundary condition ¢ = ¢’(¢) on S of V, and for 8
= 6°(¢) in V. J5(0) is creep compliance.

The two examples illustrate the application of the method
to composite materials consisting of inviscid and time-depen-
dent phases. Similar applications are possible to viscoplastic
phases. A more extensive treatment of these subjects and as-
sociated solution methods has been given by Dvorak (1992)
and Dvorak et al. (1993). The latter work explores applications
to unit cell models, which are typically analyzed by the finite
element method. It shows that the TFA and finite element
methods deliver the same numerical results for the local fields,
but that the TFA method is more efficient with meshes up to
about 100 elements, and of course, it does not require imple-
mentaticn of inelastic constitutive relations in a finite element
program. ‘
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Fig. 1 Schematic of Hill's self-consistent model. In the Mori-Tanaka
model, the overall compliances M and Tt are replaced by the matrix
compliances M, and 9R,. and the overall stress rate & by the volume
average of the matrix stress rate o,.

4 Correction of the K-B-W and Hill Models

Following the early work of Bruggeman (1635) and Hershey
(1954), Kroner (1961), Budiansky and Wu (1962) and Hill
(1965) presented self-consistent models for prediction. ¢! over.
all instantaneous properties of inelastic polycrystaic tna are
easily extended to composites. The key assumption o' <uch
models is that interactions between the phases in the repre-
sentative volume are approximated by embedding each phase
or crystal grain of elastic compliance M, into an effective ho-
mogeneous medium (of compliance M or M) which is then
loaded as indicated by (1), Fig. 1. The goal is to estimate the
local fields at each step of loading, or with reference to (5)
and (25), to estimate the elastic and instantaneous stress or
strain concentration factors. To simplify further, the embed-
ded phases are assumed to be of a particular ellipsoidal shape,
so that the Eshelby (1957) tensor S of the transformed ho-
mogeneous inclusion in the effective medium can be utilized
in the solution.

The Kroner, Budiansky and Wu, or K-B-W model further
assumed that M, = M, and that an overall inelastic strain ¢”
had accumulated in the effective medium. Since the entire
aggregate was assumed to be homogeneous, the total strain in
a phase strained inelastically by ¢ was found as

e=e€+S(ef—¢™). (40)
Here, &° is the overall applied strain rate, and S depends on
M and the inclusion shape. In the case of a spherical inclusion
in an isotropic medium, S reduces to a scalar with the eval-
uation 2(4 — 51)/(15(1 — »)). Then, the ¢ was expressed by
(22), and both the total and inelastic overall strains were eval-
uated as a volume average of the local strains (32). For the
homogeneous aggregate, where B, = 1, this is in agreement
with (14)).
Hill (1965) concluded that in the K-B-W model, the effective

medium imposed a purely elastic constraint on the inelastically -

deforming phase, and thus ‘‘disregarded the pronounced di-
rectional weakness in the constraint of an already yielded ag-
gregate”’. Taking into consideration the local heterogeneity
and both local and overall elastic anisotropy, he proposed to
embed each phase as an inhomogeneity in a large volume V
>> V, of an effective medium with elastic compliance M (taken
from (33,)) and as yet unknown instantaneous overall com-
pliance M. The key assumption in this model is that at each
point of the loading path, 9 is constant in V — V., and 9N,
in V,, even though both actually depend on the local defor-
mation history which is not necessarily uniform. However, if
I is taken as constant, the boundary conditions (1) are pre-
scribed at the surface Sof V, and the inhomogeneity is assumed
to have an ellipsoidal shape, then art least the local fields o,
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and ¢, are uniform (Eshelby, 1957), and one finds the self-
consistent estimates of the stress concentration factors in (5),
and (33) as

B=(M"+M) "M +M) ®,=(IN" +90,)" (90" + IM).

(41)

The M" = S - S)"'Mand M" = SU — S)" 'S (with S
evaluated in M and 9N, respectively) are Hill’s constraint ten-
sors that can be interpreted as compliances of the cavity in the
effective medium M or 9N containing V,, under boundary
conditions analogous to (1) prescribed at S,. After substitution
from (41), (33) provides two systems of implicit algebraic equa-
tions for the coefficients of M and 1.

Since the late 1960’s, Hill’s self-consistent model has been
accepted in the micromechanics literature as the standard pro-
cedure in analysis of inelastic heterogeneous media. However,
we recall that in addition to the relations (13) and (32) for the
total strains, an admissible model must satisfyv the generalized
Levin's (1967) formula (14) or (34) for the local and overall
transformation fields. Clearly, if the ®, are taken from (41),
then (33;) and (35) yield entirely different estimates of 9.

To correct this inconsistency in Hill’s (1965) model, we pro-
pose to replace the actual overall stress rate ¢ applied to the
effective medium in Fig. I with a different overall rate, denoted
as ¢°¢. To find &%, we utilize the fact that the ®, given by
the transformation field method in (24,) and (25,) satisfy both
{33,) and (35), providing of course that the transformation
influence functions comply with (10). In particular, we evaluate
the ¢3¢ from the requirement that it provides the same estimate
of the-local stress rate &, in the Hill’s model as does the actual
overall rate ¢ in the transformation analysis. With reference
to (41), this can be recorded as

0,=®,0=(IM" +IN,) " "(IN" + M) °C, (42)

where the ®, are now given by (24,) or (25,) rather than (41).
Therefore, application of the overall rate

65C= (M + M)~ '(ON" + M) ®, & 43)

to the self-consistent model of Fig. 1 recovers the local stress
and strain rates that coincide with those found by the trans-
formation method. Also, the instantaneous overall compliance
of the effective medium subjected to boundary conditions (1)
and (43) will coincide with that found from (33,) and (35). An
entirely analogous modification can be easily developed for
the variant of the above approach based on the Mori-Tanaka
method, where the effective medium of Fig. I is replaced by
the inelastic matrix, and the prescribed overall stress by the
average matrix stress.

Of course, (25;) with the ®, from (26) or (27) already pro-
vides the correct estimates of the local fields, but the modi-
fication may be useful in finding estimates of the fields in
regions surrounding the inhomogeneities. In any event, the
comparisons with experiments and the PHA model in §5 below
indicate that the K-B-W and Hill models provide a poor res-
olution of the local fields and are therefore of little value in
predicting observed behavior.

5 Bimodal Theory and the PHA Model

The theoretical models that have been useful in interpre-
tation of the experimental results described below are the bi-
modal plasticity theory (Dvorak and Bahei-El-Din 1987), and
the periodic hexagonal array (PHA) mode! of Dvorak and
Teply (1985) and Teply and Dvorak (1988).

The bimoda! theory admits two distinct inelastic deforma-
tion modes in the fiber system, the fiber-dominated and matrix-
dominated modes. Each mode is activated by a different overall
stress state and, in conjunction with a vield condition, has a
branch of the overall yield surface; the internal envelope of
the two branches is the overall vield surface.
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Fig.2 The slip systems of the matrix-dominated deformation mode of
the bimodal plasticity theory of fibrous composites

In the fiber-dominated mode (FDM), the composite is re-
garded as a heterogeneous medium where both the fiber and
the matrix participate in carrying the applied load. The local
stresses in the phases may be estimated, for example, by the
self-consistent or Mori-Tanaka methods. The overall vield sur-
face indicates the magnitudes of the overall stress that cause
local stress averages to satisfy the matrix yield condition. In
particular, if the fiber remains elastic while the matrix obeys
a certain yield condition given in the form f(¢,,) = 0, then the
yield condition of the composite in the overall stress space g
becomes F(¢) = f(B,0), where B, is the elastic stress con-
centration factor in (5,). For example, B,, may be found as a
self-consistent estimate with the evaluation suggested by (41,).
More specifically, if f(a) is represented by the Mises form,
one finds the FDM branch of the overall yield surface as

Flo-e)=5 (e- o) BLQBAo—a)-3=0,  (44)
where « denotes the current position of the center of the yield
surface, 7o is the matrix yield stress in shear, and Q is a sym-
metric 6 X 6 matrix with Q;; = QO Qs = 2/3, Qi = O3
= Oy = —1/3, Qu = QOss = Qg = 2, while the remaining
coefficients vanish.

In the matrix-dominated mode (MDM) of plastic defor-
mation, all applied load is assumed to te carried by the matrix,
while the fiber constrains plastic deformation of the matrix to
simple shear straining on planes that are parallel to the fiber
axis x,. The matrix-dominated mode is thus represented by a
variant of the continuum slip-model. For the plane state of
stress that was applied in the experiments, the slip systems that
may operate in the matrix mode are indicated in Fig. 2.

The initial yield condition on any potential slip plane (k)
is taken as

]

f(r¥) = (max 78~ 13=0, (45)

where 7., denotes the resolved shear stress. The active slip
system is defined with reference to Fig. 2 by the normal #n; to
the slip plane, and by the slip direction s;, so that the resolved
shear stress in (45) is

(k) 2,172

78 =nPeusf = (1 -, (46)
where
1
T, =0y COs B 12=5 0y sin 283,. (47)
The max 7,B8) is evaluated from
Tps(07ns/88) = 7,(37,/9B) + 72(87:/38) = 0. (48)
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Fig. 3 The initial yield surface of the matrix-dominated deformation
mode of the bimodal plasticity theory of fibrous composites

For the slip system on the plane & = 1 one finds that

1 2
[31=5cos" g* for Igl=<1; B;=0for lgl=1, (49)

where ¢ = 62,/0; if 05, # 0, and the angle 6, between the slip
direction and x, is given by

tan 6, =‘—11 sin §;. (50)

The conjugate system on the plane k = 2 in Fig. 2 is specified
by the angles 8, and 6, that are related to 3, and 6, by

62-‘—'7(—61, 02=0. for |ql51, B,=0, 62=0| for |q|21,
5D

where 0 < 8, < #/4and 0 < 6, < 27.

Substituting the slip system parameters that assure the max-
ima of the resolved shear stress under the applied overall plane
stress rate, and assuming kinematic hardening for the matrix,

_one finds the overall yield condition for the MDM mode as

2 2
fa(v)=<°2’_°‘"> +<°’r°'”¢1> ~1=0 for lgl=1
70 To

, .
fb(0)=<gzl—;&> -1=0 for lgi=1.
0

These relations suggest that the MDM yield surface is an
infinite cylinder of oval crossection in the overall plane stress
space, with generators parallel to the ¢y, direction. Its cros-
section in the g;;05-plane for the initial state oy, = @ = 0,
is shown in Fig. 3. Note that this surface is independent of
phase moduli and volume fractions.

The internal envelope of the two branches (44) and (52) of
the overall surface are plotted in Fig. 4 for the boron aluminum
system examined in the experiments. The FDM segment (44)
of the overall vield surface resembles an ellipsoid in the overall
plane stress space, but since for the B/Al system it contains a
part of the MDM oval cylinder, it provides the end caps of
the overall surface.

The experimental results that follow confirm the kinemartic
hardening assumed above, and indicate the evolution of the
back stress components of the matrix-dominated mode as

(52)

doy, =doy, doeyn=doy,, for lgl=l

dag, =doy, do:x=0 for Igi=1. (53)

For the fiber mode, the derivation of (44) suggests that the
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Fig. 4 The branches of the initial yield surtace of a boron-aluminum
system evaluated from the bimodal plasticity theory of fibrous com-
posites

Fig.5 The periodic hexagonal array (PHA) model of fibrous composites
2 uni

unit cell

vectors connecting the local or overall yield surface centers to
points within or at the respective yield surfaces are related by

(54

As in (53)), the experiments suggest compliance with the
Phillips et al., (1972) hardening rule, da,, = do,,, hence the
differential form of (54) suggests hardening in the fiber-dom-
inated mode as

(om—an) =By(o—a).

da=dg. (55)

Since both modes operate on the same local volume of the
matrix, hardening in either mode affects the entire overall
surface, and there is no relative translation of the two branches
during deformation. The bimodal theory will be seen to predict
the shape and position of the observed vield surfaces, but not
the measured plastic strains.

The periodic hexagonal array model assumes that the fibers
are represented by regular polygons and distributed as indi-
cated in the transverse plane section shown in Fig. 5. This
arrangement permits selection of one of the triangular domains
as a unit cell that, when subjected to carefully selected periodic
boundary conditions, can represent the deformation field in
the entire composite under uniform overall stress or strain.
Details of the procedure have been described by Teply and
Dvorak (1988). The unit cell is then subdivided into finite
elements and the solution can be obtained either by the finite
element method, or using the transformation analysis of §3
and 4. Figure 6 shows two meshes used in interpretation of
the experiments. If the unit cell is subjected to a series of loads
consisting of the six overall stress components of unit mag-
nitude, then the stresses found in the elements r = 1, 2, ...
M, for each such loading represent a column of the stress
concentration factor matrix B, of the element r. Once these
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Fig. 6 The subdivision of the PHA unit cell into finite elements

are known, one can prescribe a suitable vield condition for the
matrix, and proceed as in the derivation of {44) to {ind the W/
branches of the overall yield surface that correspond to the
onset of yielding in each element. An incremental elastic-plastic
analysis of the PHA model then leads to evaluation of local
fields and of the overall response. If the procedure (24) is used,
the transformation concentration factors are evaluated from
(9); the computational effort can be reduced substantially by
taking advantage of the symmetries of the unit cell. The con-
stitutive relations for the elements are of the kind discussed in
§4.1. The overall deformation under selected loading can be
evaluated, for example, from the element plastic strains found
after each increment of the overall stress; these are substituted
for the eigenstrains into (6,), and the resulting overall eigen-
strain increment is used in (16), and/or added to the previous
increments in (15). A detailed description of the implemen-
tation procedure for the PHA model can be found in the recent
paper by Dvorak, Bahei-El-Din and Wafa (1993).

6 Interpretation of Experiments

In a departure from much of the current activity in micro-
mechanical modeling, we have supported our work by several
experimental studies of actual behavior of inelastic composite
materials under incremental loading along a complex path.
Most of the completed work was done with the boron-alu-
minum system at room temperature, similar studies on high-
temperature systems are now in progress. The results discussed
here were found by Dvorak et al., (1988), Nigam, Dvorak and
Bahei-EI-Din (1993a, 1993b). Interpretation of the results with
theoretical models was discussed by Dvorak et al., (1991).

All the work described was performed on thin-walled tube
specimens shown in Fig. 7. The tubes were fabricated by dif-
fusion bonding of monolayer 6061-Al/B sheets by Amercom
in Chatsworth, CA. The finished tube had seven layers of fiber
in the wall, all aligned in the axial direction, with fairly regular
fiber distribution, Fig. 8. The fiber diameter was 142y, volume
fraction ¢, = 0.45. All specimens were annealed at 400°C for
two hours, and C-scanned for damage before testing. Gripping
was facilitated by steel fixtures indicated in Fig. 7, which were
adhesively bonded at both faces to the ends of the tube. The
specimens were instrumented with strain gages and +45 deg.
rosettes for axial, hoop and shear strain measurement. Loading
was applied in tension/compression and by internal pressure
and torque in a computer-controlled MTS machine. The load-
ing rate was 4.2 MPa/min in any direction. Accuracy of meas-
urements was 0.1 MPa for stress, and 1 x 107° for strain.

The specimens were subjected to various loading programs.
Here we consider the results found for loading by internal
pressure and torque; this produced a transverse normal stress
022 and a longitudinal shear stress ¢-; in the tube wall. Since
no loading compensation was made for the axial tension in-
duced by the internal pressure, an axial normal stress o.. =
022/2 was induced as well. The measurements were thus made
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Fig. 7 Dimensions of the boron-aluminum specimen tube used in the
experiments

_ Fig. 8 Micrographs of the crossection of the boron aluminum tube
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Fig. 10 The loading path applied in the experiments

in a stress plane inclined to the 0;;05-plane used in Figs. 3 and
4; this was reflected in adjusting the scale on the oy, axis to
(~/5/2) of the applied stress magnitude. The axial stress was
accounted for in modeling.

The work focused on detection of the initial and several
subsequent yield surfaces along the loading path, and the plas-
tic strain magnitudes after each load increment. For each yield
point, the yield stress was defined by back extrapolation from
a small excursion into the plastic region, at zero offset strain.
The experimental yield surfaces were constructed by fitting the
appropriate sections of the bimodal yield surface of Figs. 3
and 4 to the detected yield points. As indicated by (44) and
(52), the matrix yield stress was the only adjustable parameter.

In addition to the bimodal yield surfaces, we constructed
initial and subsequent clusters of yield surfaces for the sub-
elements of the unit cell of the PHA model, using the refined
mesh of Fig. 9. Figure 9 shows the initial yield surface con-
figuration; the cluster of the subelement yield surfaces, and
an adjusted transverse section of the MDM surface from Fig.
3, with the experimentally detected yield points. As expected,
the loading excursions to the experimentally detected yield
points involved interaction of the load vector with some of the
subelement yield surfaces, or micro yielding. The complete
loading path applied to the specimen from this initial state is
shown in Fig. 10.

Figures 11 and 12 show the rearranged clusters of the sub-
element surfaces, together with the current bimodal surfaces
and the experimental points detected by loading excursions
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Fig. 12 The yield surfaces of Figs. 9 and 11, after additional loading
by pressure and torque

within the bimodal surface from the current end point of the
loading path. While the bimodal, experimental and the sub-
element surfaces follow the Phillips hardening rule (53) and
(55), the clusters also undergo internal rearrangement due to
the gradual expansion of the plastic region during loading,
and the residual stress field (6,) generated in the subelements
by the relaxation stresses or eigenstresses A, = ¢7° = —Lg,.
After sustained loading in a given direction, all the elements
yield and the yield surfaces then pass through the loading point.
This is particularly evident at point #6 in Fig. 12. Of course,
the element yield surfaces become intercepted during excur-
sions from the loading point toward the individual points on
the current yield surface. This causes micro yielding and ad-
ditional rearrangement of the cluster, this is not shown in Fig.
12. However, it is evident that after such rearrangement, the
experimentally detected yield surface may not necessarily pass
through the loading point such as #6 in Fig. 12. This phenom-
enon, piercing of the current yield surface, is often observed
in experiments of this kind.

At any point of the path, the normals to tangential planes
to the surfaces of the currently yielding subelements form a
cone of normals that must contain the overall inelastic strain

increment vector (Hill, 1967). This is borne out by the exper-

imentally detected increments shown in Figs. 11 and 12. Note
that the PHA predictions generally agree with the experimental

336 / Vol. 115, OCTOBER 1993

0,, (MPa)

800 g Al ¢, = 0.45

60.0-

Cone o
Norma's

Direction of Strain Vector
b

-40.0 |-
—= Normal to Bimodal ----> Expermenial = Numenca!
Yield Surface
500 | H 1 1 -
-20.0 0.0 20.0 40.0 60.C 800 iCCC ot et

r
5‘5 G,, (MPa)

Fig. 13 Details of the yield surface clusters at loading points wit.h
experimentally measured and predicted directions of the overaii plastic
strain rate vectors

observations, while the normals drawn 1o the bimodal surface
approximating the experimentally detected surface tend to de-
viate substantially from the experimenially measured piastic
strains.

This is illustrated further in Fig. 13. The experimentally
detected surface should be regarded as an envelope of the
instantaneous vertices of the cluster. This explains the lack of
normality, without violating the Drucker (1951) postulate. On
the other hand, this general property of plastic flow in het-
erogeneous media disqualifies simple modeling techniques
which base the determination of plastic strain increments on
normality to a single overall yield surface. This applies in
particular to the approaches based on the self-consistent or
Mori-Tanaka methods discussed in §4. The bimodal theory
would not provide much better estimates and therefore is not
intended for this purpose; however, as.the experiments show,
it is quite useful in predicting the shape and position of the
initial and subsequent yield surfaces.

Figures 14 to 16 show comparisons between the predictions
of plastic strains along the path of Fig. 10, obtained from the
PHA model with the two meshes of Figs. 6 and 9, the matrix
mode of the bimodal theory, the Mori-Tanaka version of the
uncorrected Hill model discussed in §4 (Gavazzi and Lagoudas,
1991), and from experimental measurements. The inelastic
constitutive relation for the matrix in the PHA and bimodal
models was derived from the two-surface plasticity theory of
Dafalias and Popov (1976); implementation of this theory was
described by Dvorak, et al., (1991). The comparisons indicate
that, as expected, the Mori-Tanaka and bimodal theories fail
1o approximate the actual plastic strains. In contrast, the PHA
model provides a reasonable approximation, although there is
a significant deviation along the path segment 5-6 in Fig. 10.
However, the overall agreement is probably better than that
one might find in comparisons of the two-surface plasticity
theory with similar experiments on unreinforced tubular spec-
imens loaded along an open path.

7 Conclusions

The transformation field analysis is presented here as a gen-
eral method for solving transformation loading problems for
heterogeneous media with many interacting inhomogeneities.
The method accommodates any uniform overall loading path
and inelastic constitutive equations tha: conform with the ad-
ditive decomposition of local strains, as well as any micro-
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mechanical model that offers connections between local and
overall fields in representative volumes of elastically deforming
heterogeneous aggregate. Indeed, many existing approaches to
analysis of inelastic heterogeneous media, such as the unit cell
models, and the self-consistent, Mori-Tanaka and other meth-
ods based on the Eshelby solution are included as special cases
of the TFA procedure. The elastic-plastic, viscoelastic and
viscoplastic deformation problems are also treated in a unified
manner, by solving a system of governing equations for either
total local fields or for their rates. While the nature of the
governing equations and the solution methods may vary, their
derivation is accomplished in a standard form that incorporates
local geometry effects through the transformation influence
functions, and local material response through the selected
constitutive relations.

The transformation method obviates the need to solve in-
elastic inclusion problems, indeed, such solutions were shown
here in association with models that violate the generalized
Levin formula. A correction was proposed for Hill’s formu-
lation of one such model.

In comparisons with experimentally measured plastic strains,
only the unit cell models appear to provide reasonable ap-
proximations to the observed magnitudes. The main reason is
the ability of these models to monitor the correct direction of
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Fig. 16 Observed plastic strains for the loading path of Fig. 10, com-

pared with predictions of various models

plastic strains. The models that rely on normality to a single
overall vield surface are bound to provide misleading predic-
tons, because no such single overall surface actually exists.
The experimentally found surfaces are seen as loci of vertices
of yield cones formed as inner envelopes of the clusters formed
by muluple local branches of the overall yield surrace. Nor-
mality is thus satisfied only within the cone of normals to the
local surfaces. Only those micromechanical models that can
reproduce the plastic strain increments within these cones may,
in general, provide reliable predictions of the observed be-
havior.
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Abstract.  This paper examines several aspects of numerical implementation of the
transformation field analysis (TFA) method in applications to inelastic composite materials. In
its general form. the method can accommodate any uniform overall loading path, inelastic
constitutive equations, and micromechanical model. The response of a selected model to
thermomechanical loads and local inelastic or transformation strains is found through mechanical
transformation influence functions, which reflect the chosen microgeometry and the elastic
response of the phases. Application of the transformation field analysis to elastic~plastic fibrous
composites considers a unit cell model and incremental plasticity constitutive equations. For
moderate mesh subdivisions of the unit cell, TFA proved to be more efficient than the finite-
element method.

1. Introduction

Transformation field analysis (TFA) is a method for incremental solution of thermomechanical
loading problems in inelastic heterogeneous media and composite materials, described in
recent papers by Dvorak (1991, 1992). When used with a selected micromechanical model,
the analysis provides piecewise uniform approximations of the instantaneous local strain
and stress fields in the phases, and estimates of the overall instantaneous thermomechanical
properties of a representative volume of the heterogeneous solid. The purpose of the present
paper is to examine several different aspects of numerical implementation of the method
in solutions of problems for composite materials consisting of elastic—plastic, viscoelastic,
and viscoplastic phases. A more detailed description of the implementation procedure for
several material types is described by Dvorak and co-workers (1994).

The first three sections of the paper introduce some preliminary concepts: section 2
contains a brief summary of various definitions of local and overall properties; section 3
outlines the concept of eigenstress and eigenstrain influence functions and concentration
factors, while section 4 describes the essence of the TFA method. Details of this method
for composites with elastic—plastic phases are given in section 5 and this is followed by
examples in section 6.

The notation used is fashioned after that introduced by Hill (1963); (6 x 1) vectors
are denoted by boldface lower case Roman or Greek letters, (6 x 6) matrices by boldface
uppercase Roman letters, and AA~! = A~'A = [, if the inverse exists. Scalars are denoted
by italic letters. Bold italic characters are reserved for material properties that change during
deformation. Volume averages of fields in V,, such as A,(x) or €,(x), or of o(x) in V are
denoted by A,, €,, or o.

0965-0393/94/3A0571+16819.50 © 1994 IOP Publishing Ltd 571
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2. Local and overall properties

A certain representative volume V of a heterogeneous solid, such as a composite or
polycrystal, made of many perfectly bonded phases r = 1,2, ..., N, resides in volumes
V, € V. The constitutive relations of the phases may represent inviscid or time-dependent
response, and at any time ¢ the total strains and stresses can be additively decomposed as

€ (X, 1) = €(x, 1) + p,(x, 1) o (X, 1) = oL (X, 1) + A\ (x. 1) (1)

where x are material coordinates in a cartesian system in V. The €; and 4, in (1) denote,
respectively, the elastic strain due to certain surface tractions at the boundary of V,, and
an eigenstrain in the phase r. Similarly, the o¢ and A; in (1) denote the elastic stress and
eigenstress in phase » under certain surface displacements applied at the surface V.

The eigenstrain and eigenstress fields, henceforth referred to jointly as transformation
fields, may consist of contributions of distinct physical origin, and may be decomposed
further. For example, if only thermal and inelastic effects are considered,

Br(X, 1) = m,6(r) + €"(x,1) + - - - Ar(X, 1) =L6(t) + o™(x, 1) + - - - ()

where m, and |, are the thermal strain and stress tensors. The coefficient of m, represent
the linear thermal expansion coefficients, €, denotes an inelastic strain, and o arelaxation
stress.

With these definitions, (1) become

€ (X, 1) =M,0,(x, 1) + m,0(1) + €°(x, 1)

(3)
or(x. 1) = L€, (x,2) + L6(t) + o™(x, 1) \

together with the interrelations

m, = —-M,l, €' (x, 1) = =M, a™(x, 1)

l, = -L,m, or(x,1) = —L,e%(x, 1)

where L, and M, = L>! are the elastic phase stiffness and compliance tensors, assumed to
be diagonally symmetric, positive definite, and constant.

The representative volume V of the heterogeneous medium is definéd either as a
sufficiently large sample that contains many phases and reflects typical macroscopic
properties, or as a suitably selected unit cell of a (usually) periodic model of the actual
material geometry. In either case, macroscopically homogeneous response and the implied
existence of certain overall or effective properties are assumed under macroscopically
uniform overall stress o(¢) or uniform overall strain €(r), prescribed through surface
tractions or displacements specified on the surface S of V. When phase eigenstrains are
present, we further assume that if V is free of surface tractions, the displacements on S of V
are consistent with a macroscopically uniform overall strain wp(t). Similarly, if the volume
V 1s subjected to zero surface displacements, then \(x, t) denotes an eigenstress field in V
that causes surface tractions on S consistent with a macroscopically uniform overall stress
A(t). In analogy with (2), u(t) and A(t) will be referred to as the overall transformation
fields.

In actual solutions, the continuous fields are usually replaced by piecewise uniform
approximations in the phases or in subvolumes §2, of a discretized unit cell,
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=1,2,....M,Q, € V,, and M > N. Then, the total overall and local fields are
related by

€,(1) = A e(2) o,(t) =B,0() (4)'

where A, and B, are the mechanical strain and stress concentration factor tensors.
Moreover, the total and the transformation fields are related by independent exact relations
derived originally by Hill (1963) and Levin (1967)

M M
€= coe,(t) o) = co0,(t)
p=l p=1

%)

M M

A =D AN p) =) c,Blu,(0)
p=l p=l

where the volume fractions of the subvolumes are given by ¢, = 2,/ V.
The overall response may now be expressed in terms of the overall elastic stiffness L,
or compliance M, and the transformation fields, as

€(t) =Mo(t) + u(1) o(t) = Le(®) + A(0) (6)

where M = L~!, A(r) = —=Lpu(r), u(t) = —MX(#). The decomposition (2) applied to the
overall quantities suggests that

€(t) = Mo (t) + mo(t) + €°(r) o(t) = Le(?) +16(t) + o) @)

and the relations (5) provide the well known connections (Hill 1963, Laws 1973)

M M
L=) cL,A, M=) c,M,B, (8)
p=1 p=1
M M
1= c,(l, +L,a,) m= ) c,(m, +M,b,) 9)
p=l p=1 :
where I, m = —MI are the overall thermal stress and strain tensors, and a,, b, are

thermoelastic influence factors of the subvolumes.

3. Local fields

The local elastic and transformation fields are sought in terms of piecewise uniform
approximations within phase volumes V,, or subvolumes ,, of discretized phases. Each
subelement resides in only one phase r, but each phase may contain one or more
subelements. As in (7), the effects of external mechanical loads and the piecewise uniform
local transformations are superimposed,

M
€x(t) = Ape(t) + ) _ Dy [m,0(0) + €7 (1)] (10)

n=1

M
o,(1) =B,o(t) + Y _ Fpu[l,8(0) + o5 (1)]. (1

n=1
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A, and B, are the usua. mechanica] concentration factor tensors. Under overall strain
€(r) =0, D, g es the strain caused ip Q, by a unit uniform eigenstrain located in Q,.
Under overall stress o(¢) = 0, Fon defines the stress in £2, due to a unit eigenstress in
$2,. In what follows, D,y and F,, will be referred to as the transformation concentration
factor tensors. If (10) were applied to a transformed ellipsoidal homogeneous inclusion in
an infinite solid, the local strain would become €, = D, u,, hence D,, would be equal to
the Eshelby tensor S.

Simple examples of these tensors are found in two-phase media, with phases denoted
as r =a, B (Dvorak 1990, equations (123)—(125)):

T-A)La-Lp)"'La  Dy=-(1- A/)(Ls -~ Lg) 'Ly (12)

D,,
Fa=(I-B)M.~Mp)"'M,  Fy=—(I- B,)(M. — M;) ™' Ms. (13)
In muitiphase media, the expressions for the concentration factor tensors were found
by Dvorak and Benveniste (1992) 1n terms of estimates derived with the self-consistent or
Mori-Tanaka methods. For either method. the results are

Dys = (I-A/)(L, - L)™' (8,1 - ,AT)L, rs=12... N (14
Fo=(I-B)M -M)7'(61-cB)M, rs=12...8 @5

where L and M are the respective estimates of the overall elastic stiffness and compliance
tensors, while A, and B, are the related estimates of the elastic mechanical concentration
factor tensors; L,, M, are the phase elastic properties. 4,, is the Kronecker symbol, but no
summation is indicated by repeated indices.

It should be noted that applications of the self-consistent and Mori-Tanaka methods are
restricted to certain material geometries described at the end of this section. '

Evaluation of the mechanical and transformation concentration factor tensors in unit cell
models has been discussed by Dvorak er al (1994). In particular, the kth column of the D,,
matrix for any two elements V. and V; of a unit cell was found to be

d;, =B;P,K't* k=1,2,...6 (16)

where the local strains €, are related to the overall displacements u by €, = BiP,u; K is
the overall stiffness matrix; ff, is the overall load vector due to the component u’,‘, of p,.

To verify the accuracy of the numerical evaluation of the mechanical and transformation
influence functions, one may compare the results with the general properties of these
functions, derived by Dvorak and Benveniste (1992). There exist two exact relations for

the transformation influence functions that evaluate the local fields in 2, caused by uniform
transformations in Q,

M M
Dyp(x) = 1 - Ay (x) Y Fop(x) =1-B,(x) (17)
p=I p=1
M M
Y Dy (xM, =0 F,,(x)L, = 0. (18)

p=1 p=1
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In addition, the concentration factor tensors in (10) and (11) must satisfy

caDnM, = c,M,D] ¢yFpoL, = ¢, L,FT, (19)
M M
Y Dy =0 D coFpp =10 (20)
p=1 p=1
where n, p = 1,2, ..., M, the number of elements, and ¢, = Q,/V. These connections

are exact but not independent; note that (18) and (19) give (20). Actual solutions then
show that only (17) and (18) or (20) are independent. This provides (2 x M) independent
relations for the (M x M) unknown transformation concentration factor tensors.

It can be verified that the results (12)—(15) satisfy (17)«20) for two-phase materials
of any geometry, and for those multiphase solids that contain or consist of inclusions of
similar shape and alignment (Dvorak and Benveniste 1992).

The periodic unit cell models usually have internal symmetries that can facilitate
evaluation of the transformation influence factors. While each specific unit cell geometry
has to be considered separately, Dvorak e al (1994) describe the procedure for the periodic
hexagonal array (PHA) model of fibrous composites (Teply and Dvorak 1988).

4. Inelastic response

The transformation concentration factors open the way to evaluation of the inelastic local
fields. A specific constitutive relation must be adopted in Q, to connect the current values
or rates of e‘,,“(t) or oy (?) to the history of &, (t — 1) or €,(t — 1), and 6(t — 7). respectively.
For piecewise uniform fields in the local volumes, one can formally write such constitutive
relations in the general form

o™ (1) = g(eq(t — 7).6(t = 1)) ') =f(e,t = 1), 0 —1). Q1

When substituted into (10) and (11), this provides the governing equations for the total local
fields

M
€ (1) + Y DpyMg(en(t = 7).6(0 = 1)) = Ape(t) + 2,6(1) (22)

n=1

M
To(0) + 3 FonLof(o(t = ©).6(t = 7)) = B,o(1) + b,6(1) (23)

n=l1

where the thermal concentration factor tensors are a, = 3 Dym, and b, = 3_Fyl,.
The mechanical and transformation concentration factors depend only on elastic moduli
and on local geometry. If these remain constant, the governing equations can be
differentiated and used for evaluation of stress and strain increments. or their time rates. In
this manner, the inelastic deformation problem for any heterogeneous medium is reduced
to evaluation of the various elastic concentration factor tensors or matrices, and to solution
of one of the equations (22), (23) along the prescribed overall deformation or stress path.
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5. Elastic~plastic systems

In a heterogeneous medium with elastic—plastic phases, let the phase response under the
locally uniform fields in V, or §2, be represented by the constitutive relations

do, = Lr(er - ﬁr)der + lr(er - ﬁr)dg

de, = M, (o, - a,) +m, (o, - a,)dé (24)
where L, and M, are the instantaneous stiffness and compliance tensors, and I,, m, are
the thermal stress and strain tensors that typically describe the consequence of a variation
of yield stress with temperature. «, and B, are the back stresses and back strains that

define the current centers of the yield and relaxation surfaces. These tensors depend on the
past deformation history, hence the instantaneous magnitudes of their coefficients will vary

Rewritting (21) as
dof® = LP + IPdg de;’ = MPde, + mPde
LE = Lr - Lr l’? = lr - lr (25)

M/ =M, -M, ml=m, —m,

and substitutihg into (22) and (23), one finds the following two systems of equations for
local fields in elastic-plastic heterogeneous media:

M M
de, + Z D,,,,M,,Lgde,, = A de + (ap - Z Dp,,M,,l,';)dG (26)
n=t n=1
M M
do, + Z Fo,L,M}do, = B,do + (bp - Z F,,,,L,,m‘,j)de. (27)
n=1 ’ n=1

In actual numerical solution, one may reduce these to the matrix forms
(de,} = [diag(l) + [D,,,,M,,L‘,;]]_l [[Ap]de ~ DM, ]{1, + zg}de} (28)
(do,} = [diagm + [F,,,,L,,M,f]]-l {[B.)do ~ [F,,L,](m, + mp}ds}. (29)
The solutions are sought in the form
{de,} =[A,]de + {a,}d6 {do,} = [B,]do + {b,]ds (30)

where the instantaneous strain concentration factors [A,] and the thermal strain
concentration factors {a,} are found as

-1
[4,] = [diaga) + [Dp,,M,,Lg]] [A] (31)

-1
(a,} = —[diag(l) + [Dp,,M,,LE,]] {[Dp,,M,,]{l,, + 15}}. (32)
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A substitution of (31) into (8), when the latter is written for the instantaneous quantities,
then provides the overall instantaneous stiffness matrix for the aggregate as

(L] = [chp][diag(I) + [DpnMnLg]]—l[Ap]' (33)

The instantaneous thermal stress vector is found as
-1 M
{1} = [chp][diag(I) + Do M, 21| {{a,) - [Do,M, ]{12}] + {Zc,,zﬂ}. (34)
n=1

An analogous procedure yields the overall instantaneous compliance matrix M and the
thermal strain vector . The result is

[M] = [CPMp][diag(I) + [F,,,,L,,M},’]]-I[Bp] (35)
-1 M

(m) = [c,M, [ diag® + [Fon Lo ME]] " {{b,} = [EpLy {2} ] + IZC,,m,,]. 36)
n=1

The solution algorithm for elastic-plastic composites may be constructed as follows.

Step 1. For the given interval #; < ¢ < fy4y of the prescribed histories o%(r) and 6°(s),
select the number of increments n, and compute the time increment & = (f,,; — #;)/n.

Step 2. Set the initial values of the stress field o,(t) = G,, the strain field €,(1)) = é,,
of the center of the yield surface a,(t) = &, (see the appendix), and of the tensile yield
stress Y, (1)) = f’,,, in the elements p = 1,2, ..., M.

Step 3. For k = 1,2, ..., n, do steps 4-6.
Step 4. Compute the yield function g (") — a®, 6;) in the appendix.

Step 5. If g < 0 = volume , is elastic, go to step 6; if g =0, compute {do, 1k
from (29), with do replaced by do®(¢;) and d6 replaced by d6°(s): if (3g,/ 00,)k(do,)i <
0 = elastic unloading, go to step 6; if (08,/90,)k « (do,)r > 0 = plastic loading,
compute the instantaneous plastic compliance and thermal strain vectors M} (¢ —a®, g),
my(e® — a®, 6;) in the appendix.

Step 6. Compute the stress field at time #;,:

{00}esr = {00}, + (h/D){do, +daj},
{da;}k = {do, (fesr. (o, b + h{daﬁ}k)}

where do, (¢, o,) is given by (29). The corresponding strain, €,(f¢+1), p = 1,2.. o M
and the center of yield surface a,(f+(), o = 1,2,..., T, are found from the consmugve
equations given in the appendix; T is the number of elastic-plastic element volumes at time

L.

The solution depends on the selected magnitude of the time increment A: an error of
order h? is expected in the Runge-Kutta formula used. Our implementation of the above
algorithm inc.uded iterations with various magnitudes of the time increment 4. Specifically,
the solution found at time t,.., for the selected number n of time intervals was compared to
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the solution found when the number of time increments was increased to 2n. The solutions
were compared in terms of the magnitude I{oo}i of the stress vector. If the absolute
difference ({0 }{lns1 — oo Hlzne1) was greater than y, a specified tolerance, the process
Wwas repeated with the number of time intervals doubled again. Consequently, a series of
solutions corresponding to time intervals n,2n, 4n, 8n, ... was generated until the selected
convergence criterion was satisfied. Other solution strategies may be employed as well,

for example, the time increment may be adjusted according to a specified tolerance (Sloan
1987).

6. Examples

To illustrate the numerical results obtained from (29), we apply the above procedure to
modeling of the elastic—plastic response of a fibrous boron-aluminium composite. The PHA
model described by Dvorak and Teply (1985), and Teply and Dvorak (1988) was used to
represent the fibrous material. As shown in figure 1, the fibers are arranged in a hexagonal
array and the fiber cross section is approximated by a six- or twelve-sided polygon. The
composite volume is then divided into shaded and unshaded triangular prisms. It has
been shown in the above work that under overal uniform strain or stress applied to the
model composite, one can derive certain periodic boundary conditions for the prisms that
guarantee that the local stress and strain fields in the shaded and unshaded prisms are
related by a simple coordinate transformation; hence one of the prisms can be selected as
the representative unit cell of the fibrous composite. Figure 2 shows the geometry of the unit
cell for a hexagonal fiber. Higher-order polygons are used with refined meshes (figure 3).
The calculations reported here were performed with the crude mesh of figure 3(a).
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Figure 1. Transverse cross sections of the PHA model microstructures with hexagonal and
dodecagonal cylindrical fibers.

In preparation for the TFA solution, the transformation concentration factors Fj;,,,, o,
n=12..., M, were computed for the M subvolumes of the PHA unit cell with Fhe
procedure described briefly in section 3 (see also Dvorak er al 1994). The elastic properties
of the boron fiber are taken as £ = 379.2 GPa and v = 0.21 and those of the aluminium
matrix are £ = 68.9 GPa and v = 0.33. While the fiber is assumed to remain elastic. the
matrix is elastic—plastic with initial tensile yield stress ¥ = 24 MPa. Constitutive equations
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Figure 2. The geometry of the unit cell of the PHA model.

of the matrix assumed the Mises yield condition, the Prager-Ziegler kinematic hardening
rule, and a linear stress—plastic strain response with plastic tangent modulus H = 14 GPa.
Details of the constitutive law implemented in the TFA solution algorithm (section 5) are
given in the appendix.

The overall stress—strain response computed under transverse tension o; and transverse
shear 023 using the TFA method is shown in figure 4. The response coincides with the
solution found by direct evaluation of the overall strains using the standard elastic—plastic
finite-element procedure of the ABAQUS program for the PHA unit cell. In both the TFA and
the ABAQUS solutions, the number of load increments was selected as 40. Tables 1 and 2
show the stresses computed in the elements of the coarse mesh, figure 3(a), at the end of
the overall normal stress cycle 037 = 0 — 100 MPa — 0, and at the end of the overall
transverse shear stress cycle oy3 = 0 — 100 MPa — O, respectively. The corresponding
plastic strain components egz and 623 in the matrix elements are shown in tables 3 and 4.

The efficiency of the TFA method in comparison with the ABAQUS finite-element (FE)
solution was evaluated in terms of the CPU time required in the two load cycles. Under the
transverse tension cycle, the ABAQUS solution required 204 s while the TFA solution required
67 s. For the transverse shear loading cycle, the CPU times for the ABAQUS solution and
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Table 1. The element stress 922 computed at the end of an overall transverse tension cycle
022 =0 — 100 —» 0 MPa.

Element No FE solution by ABaqQus TFA solution
in figure 3(a) (MPa) (MPa) % difference?
Fiber

| 1.901 832 14667 1.825510336 11 401
4 - 3.81085837097 - 3.82716055068  0.43
5 11.85573011330 11.78186132950 062
Matrix

2 ~13.6435394470 —13.6495023486 0.04
3 21.2004259013 21.1675381753 0.16
6 —13.726424 8309 —13.5985490140 093
13 19.070440 446 1 19.264 129925 7 1.02
14 —14.550383063 1 —-14.3651255519 1.27
15 ~13.034267690 1 —13.0052217598 0.22

? ((ABAQUS m: - -ude — TFA magnitude)/(ABAQUS magnitude)) x 100.

Table 2. The eiement stress o,; computed at the end of an overall transverse shear cycle
023 =0 — 100 - 0 MPa.

Element No FE solution by ABAQUS TFA solution
in figure 3(q) (MPa) (MPa) % difference?
Fiber
I 8.089 626 48043 8.035386999 75 0.67
4 438705814316 413474541539  0.90
5 0.742835 46995 0.74120277604  0.22
Matrix
2 —1.641704 39373 -1.64972131814 049
3 —~4.375080 35553 —4.34663883063 0.65
6 —4.947 529902 38 - —4.91791139298 0.60
13 0.464416 13693 0.47241002258 1.72
14 —5.188596 82347 —4.94389812139 427
15 —4.445 598 53765 —4.44358475334  0.05

? ((ABAQUS magnitude — TFa magnitude)/(ABAQUS magnitude)) x 100

the TFA method were 263 s and 67 s, respectively. Additional time is required to obtain the
transformation concentration factors. This is, however, a once only operation for a given
mesh.

Another comparison of the elastic—plastic response computed with the TFA and FE
methods was made for the mesh of figure 3(a) and a complex loading path in the 09,—033
stress space (figure 5). Figures 6 and 7 show the overall stress—strain response computed
with the TFA method where the numbered symbols correspond to the loading points indicated
in figure 5. The local stresses and plastic strains found with the TFA and FE methods at the
end of the loading path are compared in tables 5 and 6, respectively, for selected elements.
Again the local fields computed by the two methods are essentially identical.

While the TFA method appeared more efficient than the FE method for the unit cell
considered in the above example (figure 3(a)), the number of operations required in each
method depends on the number of elements. The cost of both the TFA and FE solutions
depends on many factors, such as the specified tolerance and the number of iterations
required to achieve such tolerance. More exact comparisons of the efficiency of the two
methods can be made only in specific applications.
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Figure 3. Examples of finite-element meshes in the unit cell of the PHA model.

Table 3. The matrix plastic normal strain fgz computed at the end of an overall transverse

tension cycle o33 = 0 — 100 — 0 MPa.

Element No FE solution by ABAQUS  TFA solution

in figure 3(a)  (1079) (10~%) % difference?
2 537.233 705 58 53330674120 0.73
3 1153.372617 18 1154.15883461  0.07
6 1151.97490964 115298182129 0.09

13 276.016801 09 271.87380419 1.50

14 — 4740178575 — 50.23948819 599

15 1158.02013150 1158.164 15196  0.01

* ((ABAQUS magnitude — TFA magnitude)/(ABAQUS magnitude)) x 100.

Table 4. The matrix plastic shear strain 2523 computed at the end of an overall transverse shear
cycle 623 =0 — 100 = 0 MPa.

Element No FEM solution by ABAQUS  TFA solution

in figure 3(a) (10~ (10-9) % difference?
2 2591.29732547 259042812482  0.03
3 1368.390414 86 1363.58835703  0.35
6 1820.690876 64 1827.88019543  0.40

13 3068.747 699 46 307046067496  0.06

14 — 708.059 347 36 — 72446278567 2.32

15 824.20906891 820.19997576  0.49

* ((aBAQUS magnitude — TFA magnitude)/(ABAQUS magnitude)) x 100.

Note also that the TFA method can readily use any selected constitutive equation for the
phases, whereas a separate UMAT routine would be needed for implementation of such
equations into the ABAQUS program. Such examples were solved for viscoelastic and
viscoplastic systems; these are discussed by Dvorak and co-workers (1994).
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Figure 4. Overall stress—strain predictions found with the finite-element and Tra methods for an
elastic-plastic B-Al composite under transverse tension loading and transverse shear loading.

7. Conclusions

The transformation field analysis is a general method for solving inelastic deformation and
other incremental problems in heterogeneous media with many interacting inhomogeneities.
The various unit cell models, or the corrected inelastic self-consistent or Mori-Tanaka
formulations, the so-called Eshelby method, and the Eshelby tensor itself are all seen as
special cases of this more general approach. The method easily accommodates any uniform
overall loading path, inelastic constitutive equation, and micromechanical model. The model
geometries are all incorporated in a similar manner, through the mechanical transformation
influence functions or concentration factor tensors derived from elastic solutions for the
chosen geometry and the elastic moduli. Thus, there is no need to solve inelastic boundary
value or inclusion problems; indeed such solutions are often associated with erroneous
procedures that violate (5); this was discussed by Dvorak (1992). In comparison with the
finite-element method in unit cell model solutions, the present method is more efficient for
cruder meshes. Moreover, there is no need to implement inelastic constitutive equations
into a finite-element program. In addition to the examples shown herein, the method can be
applied to many other problems, such as those arising in active materials with eigenstrains
induced by components made of shape memory alloys or other actuators. Progress has also
been made in applications to electroelastic composites, and to problems involving damage
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Figure 5. A transverse tension—transverse shear stress path applied to an elastic—plastic B-Al
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Figure 6. The overall 023—€)2 response predicted by the TFA method for the loading path of
figure S.

development in multiphase solids.
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Figure 7. The overall 013—€23 response predicted by the TFA method for the loading path of
figure 5.

Table S. Element stresses a22 and g23 computed at the end of the loading path of figure §.

a2 (MPa) 023 (MPa)

Element
No* ABAQUS TFA % difference® ABAQUS TFA % difference®
Fiber

| 2.486314943 2484838314 0.06 6.199577168 6.196482812 0.05
4 — 2.496518548 — 2.495716646 0.03 2.734338180 2.732595877 0.06
Matrix

2 ~15.199597040 ~15.195990 720 0.02 —1.478601859 —1478106587 0.03

3 — 0.237086563 — 0.233915256 1.34 —4.923139542 -4922870483 0.01
13 3611850432 3597884176 0.39 0.508403072 0.508454116 0.01
15 —34.973727 350 —34.967938 250 0.02 —5.455541995 —-5.455215211 0.01

4 See figure 3(a).
® ((ABAQUS magnitude — TFA magnitude)/(ABAQUS magnitude)) x 100.

Table 6. Matrix plastic strains ¢, and 2¢5, computed at the end of the loading path of figure S.

€2, (1079 2¢5, (1079)

Element

No? ABAQUS TFA % difference®  ABAQUS TFA % difference®
2 — 142658225 — 142675437 001 2612.04123 2612.15041  0.004
3 — 9453500971 - 9454331740 0.01 1378.968 67 1378.97982 0.00!

13 - 76954323 ~ 75805950 1.49 307751206 3077.52259 0.000

15 —1014.3877280 —-1014.3777050 0.001 599.298 64 599.43807 0.020

3 See figure © ).

b ((ABAQUS  nitude — TFa magnitude }/(ABAQUS magnitude)) x 100.

Appendix

This is a brief summary of constitutive equations for elastic—plastic homogeneous materials
subjected to uniform stress or strain and temperature changes. Response under such
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thermomechanical loads is determined with the help of a yield surface g(o, 8) = 0, which
contains the stress states that cause purely elastic deformations. Assuming kinematic and
isotropic hardening, the Mises form of the yield surface is given by

g(e,8) = g(;-a) i(s—a)-Y%6) =0 (A1)

where s is the deviatoric stress, a is the center of the yield surface in the deviatoric stress
space, and Y is the yield stress in simple tension. In (A1), we use the notation (a:b) to
denote the inner product of second order tensors a;; and b;;. The elastic behavior is in
effect if g < 0, or if g = 0 and [(3g/d0) : do + (9g/36)d8} € 0. On the other hand,
elastic—plastic deformation takes place if g = 0 and [(8g/dc) : do + (3g/36)d6] > O. In
this case, the instantaneous plastic compliance MP, stiffness LP, and the thermal strain and
stress vectors mP, [P in (25) are given by (Bahei-El-Din 1990, Shah 1991)

MP = (3/2H)(n : n") LP = -(2G/(1+ H/3G))(n: n") (A2)
m? = —((v3Y'(6)/(vV2H))n (A3)
I’ = (2G/(1+ H/3G))(n"m + (Y'(6)/v/6G))n (A4)
H = (d5 — Y'(6)d6)/de? d& = /(3ds : ds) dé® = /(3de® : deP) (AS)
n=(1/ /2N [15nin2n2in 2y  s=o-a. (A6)

Here, G is the elastic shear modulus, Y'(6) = dY/dé, €P is the plastic strain vector, and H
is the plastic tangent modulus of the stress—plastic strain curve. The product n:n' in (A2)
denotes the tensor product n;;jng; m is the elastic thermal strain tensor.

Evolution of the center of the matrix yield surface a and the plastic tangent modulus A
may be described in several different ways, to fit experimental observations. Specific forms
of the Prager-Ziegler and Phillips hardening rules for thermomechanical loads can be found
in the articles by Bahei-El-Din (1990), Dvorak (1991) and Shah (1991). The variation of
the plastic tangent modulus H can be found with a two-surface plasticity theory such as
that given by Dafalias and Popov (1976).
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EFFECTIVE LOCAL PROPERTIES FOR MODELLING
OF FUNCTIONALLY GRADED COMPOSITE MATERIALS

GEORGE J. DVORAK and JOSEPH R. ZUIKER
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
Wright Laboratory, Wright—Patterson AFB, OH 45435-7817, USA

Abstract

A brief survey is presented of recently developed techniques for estimating overall
elastic stiffness of statistically homogeneous multiphase solids subjected to large
stress gradients. The stiffness estimates, based on linearly varying fields, provide
local properties for a finite element analysis of functionally graded composite
materials. Comparisons with selected experiments are encouraging, however,
significant differences in local fields and overall response are found in comparisons
with predictions obtained from standard homogenization techniques.

1. Introduction

Functionally graded materials are typically manufactured as particulate, layered or
fibrous composites with variable concentrations of the phases. In service, they are
intended for applications involving large stress and/or temperature gradients, which
may produce significantly different local fields in distinct subvolumes of the
microstructure. Therefore, both variable local properties and field gradients must
be taken into consideration in analysis and design of graded material parts. A finite
element analysis is indicated, with element properties derived from a suitable model
of the microstructure. However, even if the material property variation is
approximated as piecewise uniform, standard homogenization techniques, for
statistically homogeneous systems under uniform macroscopic fields, may not
provide reliable estimates of effective material response to the gradient stress or
deformation fields. Instead, the effect of field gradients must be considered in
modelling of the effective element properties.

This paper outlines derivation of overall stiffness estimates for statistically
homogeneous composites subjected to linearly varying overall stress or strain fields,
in terms of volume fractions, shapes, and elastic moduli of the phases [1,2]. The
microstructure is modeled as a collection of ellipsoid:l inclusions, and the
Asaro—Barnett [3] solution of the non—uniform transformation strain problem, in
conjunction with modified dilute approximation and Mori—Tanaka (4] assumptions,
is used in finding estimates of mechanical phase concentration factors for linear local
fields, and of the overall stiffness. Under given gradient loads, the standard and
linear methods predict very different strain energy densities and local and overall
strain gradients, in material volumes containing less than about 100 fibres or 1000
particles, which may be comparable in size to finite elements subdividing a graded
material part or structure.
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2. Inclusions and Inhomogeneities in Linearly Varying Fields

For ellipsoidal inclusions in isotropic solids, Eshelby [5], and in anisotropic solids,
Asaro and Barnett [3] show that if the applied eigenstrain distribution is linear,
then the strain field in the inclusion also varies linearly. In particular, let a large
volume V of an elastic material of stiffness L, be subjected to the overall strain

HCEEHEEHES 0
imposed by corresponding displacements on its surface S. Let Vi € V contain a
homogeneous ellipsoidal inclusion subjected to the eigenstrain

WP (2) = W + 1) (3~ 3,) - (2
where z is the centroid of V.. Then, the local strain field in V, is given by

r)

* -
f(il (z) = E(ijO) z) + 51jk1uﬁ) + Sijqum ’h(;ﬁl (2 — T), (3)
where Sjjx1 is the Eshelby tensor in L, and S’{jqum is the linear Eshelby tensor that
relates the linear strain gradient component in the zp—direction, to the z,—direction
component of the gradient of the applied eigenstrain (2). Using a linear field
variant of the equivalent inclusion method, one can show that the strain field in an
ellipsoidal inhomogeneity Ly in Vi, under the overall strain field (1) varies linearly
and can be written as, ,

(@) = e + K{iL (3~ %7), )
with the evaluation,
- e g A e s - -
e, =[I-SL (L~ L)] K¢ o, = Lie, ()

where €r and €, are the local and overall linear strain fields, represented by (24x1)
and (24x24) matrices, with (6x1) and (6x6) submatrix coefficients

?

- T - T
e={eff £{f) wif} £} e={el) wiPy iy ()
I %01 2T x{O1 L, 0 0 0 S0 0 0
k=01 0 0|7 _JoLools_|oS8,S,s,
00 I o 00 L O 0 S, S,, S,
00 o0 I 00 0 L 0 S, Sy Sig
L J L g - P

The I and I are (6x6) and (24x24) identity matrices, L, is analogous to Ly, So is the
(6x6) matrix form of the Eshelby tensor, and S;; are (6x6) submatrices derived from
the linear Eshelby tensor.
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3. Statistically Homogeneous Solids under Linear Boundary Conditions

Consider next a representative volume element of a multiphase medium with a
microstructure that can be approximated as a collection of inhomogeneities r = 2, §,
... N, bonded to a common matrix r = I, with constant phase volume fractions in a
representative volume element. Again, the applied overall strain is prescribed as in
(1). The local strain fields, which may be nonuniform and possibly discontinuous,
are approximated by linear fields (4). Connections between the local and overall
fields are obtained from a least square approximation of the local strains and their
averages as,

1 1 - 1, — -
el == ffij(z)dv7 KT = = f(xk—xk)fij(x)dv1 Jij; = =(x%;)(x;—%;)dV (6)
A% A" \'%
v v
1 1 -
iy = 'V_feij(z)dv K{edek = v—f(zk—z{(”)eij(z)dv. (7)
v, ry

‘Substituting (7) into (6), and assuming that V is symmetric with respect to the
planes z, = z{"', one can find the connection,

- a K -~ -
o= 1G5 ®)
T 0 0 0] I 0 o0 o
. o g1 0 o] . OTJDT 0 0
C=1lo 0o 70 of| G =C|zm1 0 X1 0
0 0 o0 J| ML 0 0 JPI

If V is not symmetric, off—diagonal terms appear in the lower (18x18) submatrices.

As in the case of heterogeneous media under uniform boundary conditions, the
local strain fields can now be related to the overall strains by certain concentration
factors. For the linearly varying local and overall fields, we write

e = A ¢, (9)

where A: is the mechanical strain concentration factor matrix that can be evaluated
from certain micromechanical models; a similar form can be written for the local
stresses. For example, the dilute approzimation assumes a model composite
material reinforced by ellipsoidal inhomogeneities, but neglects their interaction.
Each phase is regarded as a solitary inhomogeneity, hence one can utilize (5) to the
dilute approximation estimate
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. AP 1-sLw, -1 'K, . | (10)

A modified Mori—Tanaka [4] assumption simulates interaction of the phases by
embedding each inhomogeneity in a large volume of the matrix (r = I) which is
loaded by remotely applied displacements corresponding to the matrix average
strain and strain gradient. In particular, for a single inhomogeneity in a large -
volume of matrix of stiffness L, ,

~ -~

e = T, ¢ T, = I T, = A®) forr> 1 (11)

T

With reference to (8), one can then find the strain concentration factor as

- - N .~ . - - PO
AW - [C,+ 3 C T ' AW o A o r s (g

The self—consistent estimate can be formally derived in a similar manner, however,
its evaluation is unlikely at present, as the Eshelby tensors (3) would need to be
known for an elastic solid with the same gradient stiffness as the effective medium.
In contrast to the simple diagonal form shown in (5), this stiffness will have nonzero
offi—diagonal terms, hence the Asaro—Barnett results will not apply.

-~

The overall or effective gradient stiffness L of the statistically homogeneous
medium can be found in terms of the known strain concentration factors. Noting
that the local and overall stresses are related, in analogy with (8), as,

~ - -

- N -
Coy= 3% C,o0,, (13)

r=1

we use (5,) and (9) to find,

e
'% C, LA, (14)

r=1

o =L L=C

i
' This effective gradient stiffness can be written in terms of the (6x6) submatrices L;;.
To emphasize the differences between (14) and an analogous estimate derived from a
standard homogenization method for uniform local and overall fields, we write the

expanded forms of the two effective gradient stiffnesses, in terms of the (6x6)
submatrices Lj;j :

[Logo0 0 0 ] (L 0 0 O

- 0 L;; Ljm Ly - 0 L 0O

L= 10 Ly Ly Ly Liv =10 01 0 (15)
0 Lj L3y L 0 00 LJ
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4. Comparisons of Strain Energy Densities

l To appreciate the differences between the predictions of local fields and overall
" properties found from the mean—field or standard Mori—Tanaka method and its
gradient form, we evaluate the strain energy demsity of a specific composite
material, with overall gradient stiffness estimated by the two forms (15), under
identical boundary conditions. In a given volume V, the strain energy density is

-

o CL

; W=l [oxePxdv = 'v. (16)

1
2V Y 2

The composite material has an isotropic carbon (Cg matrix (E = 28GPa, v = 0.3)
reinforced by aligned, continuous silicon—carbide (SiC) fibres or spherical particles
(E = 320GPa, v = 0.3); the reinforcement volume fraction is taken as equal to 0.5.
However, only a single fibre or particle occupying a 1 mm?3 volume is considered in
finding the inertia tensors in (7). We evaluate %16) with the two stiffnesses (15),
and show the ratio of W/Wyq4 for selected overall loading conditions.

. . 0 0 )
Figure 1 shows the energy ratio as a function of 7,3/ 7;;, the ratio of the applied
stress gradient, in the transverse x;—direction, of the overall normal stress in the
fibre direction z;, to the normal stress itself. When the gradient stress field
component is zero, the energy ratio W/Ws;q = 1, and there is no difference between
the two procedures. This is expected, since the modified method provides the same
estimate for the upper left (6;)8) sub—matrix as the standard method.
This and other comparisons indicate that, for particle reinforcement with
E; > Eq, the energy ratio is larger than ome. This suggests that the standard
Nfori-—Tana.ka method overestimates the gradient stiffness of the particulate
composite. For the fibrous system, the energy ratio may be either higher or lower
than one. Thus the standard method will overestimate certain stiffness components
while underestimating others. Of course, different conclusions may reached for
other than the SiC/C systems.
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Fig. 1 Comparison of strain energy deasities
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5. Intei-pretation of an Exp-riment

In his 1967 paper, Margolin [6] observed that the bending modulus of thin fibrous
lass/epoxy plates was dependent on the thickmess of the plate. The plates were
ormed with 1—10 layers of fibres through the thickness, of constant fibre volume
fraction equal to 0.38. In the above gradient stiffness (15,), for fibres aligned in the

x—direction, the bending modulus corresponds to Lq[1,1], the 1,1 coefficient of the

Ly, submatrix. The extensional modulus is given by Lgo[1,1]. In finding these
estimates, the inertia terms in (6) and (7) were computed for a rectangular array of
1 — 10x10 fibres. For the specific phase properties of the tested composite plates,
Figure 2 shows a comparison of the measured and computed moduli ratios, using
both the gradient and standard stiffness estimates.

This result, and the energy comparison in Fig. 1, imply that the presence of large
stress gradients in small heterogeneous volumes may have a significant effect on
local response, and therefore, should be accounted for in estimating local properties.

1.1 T T T T T T T T T T
[ i *
1t I
A
09 1
0.8 nlxz -1
L2 [L1] 0.7 9
—al L 02 7 1 o
L(L1] ] —
0.6 | .
) . 05 r ® Experimental ]
B ——i—— Gradient Stiffness Estimate A
0.4 —— Standard Stiffness Estimate
0.3 g L | 1 1 1 L 1 i | 1 1

0 1 2 3 4 5 6 7 8 9 10 1
Number of layers

Fig. 2 Comparison of predictions with Margolin’s [6] experiments

6. References
1 J.R. Zuiker, FElastic and inelastic micromechanical analysis of functionally graded

materials and laminated structures using transformation fields, Ph.D. Thesis,
Rensselaer Polytechnic Institute, Troy, NY (1993).

2. J.R. Zuiker and G.J. Dvorak, The effective properties of functionally graded composites
1. Extension of the Mori—~Tanaka method to linearly varying fields, Composites
Engineering 4 (1994) 19-35.

3. R.J. Asaro and D.M. Bamett, The non—uniform transformation strain problem for an
ellipsoidal inclusion, J. Mech. Phys. Solids 23 (1975) 77—83.

4. T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials
with misfitting inclusions, Acta. Metall. 21 (1973) 571-574.

5. 3.D. Eshelby, Elastic inclusions and inhomogeneities, in I.N. Sneddon and R. Hill (eds),
Progress in Solid Mechanics, I, North Holland (1961) pp. 89—140.

6. G.G. Margolin, Elasticity modulus in the bending of thin specimens of a unidirectional

glass—reinforced plastic, Polymer Mech. 3 (1967) 492—493.




J. Am. Ceram. Soc., 78 (1] 205-10 (1995)

Joumal

Initial Failure Maps for Fibrous CMC Laminates

George J. Dvorak* and Michal Sejnoha

Center for Composite Materials and Structures, Rensselaer Polytechnic Institute,

A simple micromechanics-based procedure is used to evalu-
ate ‘initial failure maps for brittle composite laminates
under combined in-plane loads and temperature changes.
The maps are derived from local stresses in the fiber, matrix
and at their interfaces, and from selected magnitudes of the
respective strengths. In a particular loading plane or space,
the maps indicate the damage-free load range of the lami-
nate, and the source of likely initial failure by fiber or
matrix cracking, or by fiber debonding. An application to
Al,0,/MoSi, laminates with unidirectional and (0/+45),
layups is presented. In this system, the thermal stresses are
very small in the 1200°-20°C range; hence laminate failure
is dominated by mechanical loads. Propensity to fiber
debonding appears to limit the load magnitudes that can be
safely applied to the angle-ply laminate.

L

OUR objective is to find the local stresses in the fibrous plies
of a laminated plate of any layup which preserves symme-
try about the midplane, as functions of uniform in-plane loads
and temperature changes applied to the laminate. The quantities
of interest are both the average matrix and fiber stresses, and
their distributions at and in the vicinity of the fiber—matrix inter-
face. Extreme values of the stress components are identified,
related to certain selected strength magnitudes, and then plotted
as branches of the failure maps in the overall or laminate stress
plane. Internal envelopes of the various branches represent
boundaries on the allowable overall stresses that should not
damage the laminate.

The analytical procedure combines the laminated plate the-
ory for evaluation of average ply stresses under the prescribed
thermomechanical loads with estimates of the local stresses
within the plies, found from a variant of the Mori~Tanaka
method, as outlined in Refs. 1 and 2. Systems with coated and
cylindrically orthotropic fibers are discussed in Refs. 3 and 4.

Introduction

IL.

First. we outline evaluation of average stresses in the plies,
and in the fiber and matrix phases within the plies, due to uni-
form thermomechanical loads applied to the laminate. The rep-
resentative volume element of Fig. 1 is used, with an overall
Cartesian coordinate system X defined such that the X, X, mid-
plane is the plane of symmetry; the plies are numbered in the
+X, direction as / = 1, 2, ..., n, and their total number is 2n.
The volume fraction of the ply (i) is ¢, = ¢,/1. the total thickness
of the plate is 2r = 23y, and Z¢, = 1. Each ply is made of a
homogeneous matrix bonded to fibers aligned in a certain
direction x| that contains the angle ¢, with the X,-axis and

Local Stresses and Overall Properties
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serves to define a local Cartesian coordinate system x’ with x} =
X,. The elastic symmetry of the plies is at least orthotropic:;
material symmetry planes coincide with the planes of the x'
system.

The plate is loaded by self-equilibrated surface tractions,
derived from uniform in-plane overall stresses § = [S,, S.,
§,,]" defined in the X coordinates, and by a uniform change
in temperature A8 = 6 — 6,. In the symmetric plate, the
resulting deformations are the in-plane overall strains E =
[E,. E., 2E,]". Engineering small strains and the matrix
notation are used. The macroscopic response of each ply is
identified with that of a homogeneous layer; the layers are
assumed to be perfectly bonded; hence the ply strains E, =
[E}, E% 2E!,]" measured in the X system must satisfy the com-
patibility condition

E =E (1)

However, the E\, strains, while uniform, may be different in
each ply.

The overall stresses S create a complex stress field within the
laminate. Evaluation is simplified by the assumed macroscopic
homogeneity of each layer, which provides for uniform average
stresses in each ply; these are denoted as S, = {§, 5%, §4,1" in
the X system. The averages may be related to the overall
stresses S by

S, =H;S + hAg (2a)
N
;lc,S, =S (2b)
N
2cH, =1, (2¢)
i=1
N
2c¢h, =0 (2d)

where the stress distribution factors H, and h,, derived below,
are (3 X 3) and (3 X 1) matrices, respectively. The remaining
relations provide for equilibrium of the membrane forces, and
I,is a (3 X 3) identity matrix.

We now proceed to find the stress and strain volume averages
in the matrix and fiber phases. in the local coordinate system x,
in each layer. Thus we first transform the ply averages (1) and
(2a) from the overall system X to the local system x,. as

3 Middle

/ Surface

B ok-—p P
/
x

Fig. 1. Representative volume element of a laminated plate.
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€, = NE, (3a)
o =R(HS +hA8 (3b)

where the matrices N, and R, in the notation m = cos b, n =
sin y;, are

m- n- mn
N =1} n? m? —mn (4a)

-2mn 2mn (m*— n?)

2mn

R, =|n m*  =2mn 4b)

—-mn mn (m*-n?

Then, the phase strain and stress averages in the x_ system are
related to the transformed ply averages (3) and to the local
change A6 by

€ = ANE + alAé (5a)
o) = BR,(H;S + h,A6) + b'Ag (5b)

where r = f, m; A!, B', are (6 X 6) mechanical stress concen-
tration factors. and al, b! are (6 X 1) thermal stress concentra-
tion factors. To find correct phase field averages € and ¢ as
(6 X 1) vectors, the products R,H,S and R h A6 in Eqs. (5)
must be augmented by zeros in rows 3, 4, and § into (6 X 1)
vectors.

To find the factors A7, B', a’, b, H,, and h,. we assume that
the fiber and matrix are both homogeneous and possibly aniso-
tropic elastic solids, and write the constitutive relations for the
elastic phases as

ol =L’ + A9 (6a)
€ = Mio' + m'A¢ (6b)

L and M| = (L")~!' are phase stiffnesses and compliances;
I, m] = — Ml are phase thermal stress and strain vectors; all
are displayed in the Appendix.

Estimates of the mechanical concentration factors A’ and B!
in a fibrous ply can be obtained by several micromechanical
methods. Here we use the Mori-Tanaka® procedure that also
will be useful in finding the stress distribution in the matrix at
the interface with the fiber. The assumption is that a representa-
tive volume of the fibrous ply is either loaded by an overall uni-
form stress o or deformed by an overall uniform strain €,
represented by (6 X 1) vectors. The local stresses or strains in
phase s = f, m then follow from the expressions o, = B.¢ or
€, = A, where'"

A, =(L*+ L) L*+ L) (7a)
B =(M*+M)'M*+ M) (7b)
L= [Sc(L*+L)"']" - Lx (7c)
M= [ScM*+M)']"' - M* (7d)

The L and M are estimates of the overall stiffness and compli-
ance of the composite material in the representative volume, L,
and M, are the phase properties. and L*, M* = (L*)~' are
given in the Appendix. In a two-phase composite. the thermal
factors can be derived from the mechanical as®’

I —AXNL - L)"'d, = 1) (8a)
(I - B\)(Mx - Mm)_l(mm - mf) (8b)

il

a,

b,

il

Substituting the moduli of the phases r in layer (i). one obtains
the (6 X 6) A! and B’ matrices needed for evaluation of the
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local fields (5) in the phases. A similar substitution in Egs. (8)
provides the (6 X 1) a’ and b’ matrices.

To find the stress distribution factors H, and h, in Eq. 2a) we
first reduce the (6 X 6) L and M matrices in Eqgs. (7¢) and (74)
to plane stress forms by deleting the third, fourth. and fifth rows
and columns from M. This gives the (3 X 3) ply compliance
M., and the stiffness L, = M, of the layer (i) in the local ply
coordinates x,. Transformations (3) and (4) from x, to the over-
all system X

L, = NTLN, (9a)
M. = RTMR, (9b)
1, = N7, (9¢)
M, = R'm, 9d)

provide the layer properties in the X coordinates.
Constitutive relations of the plies in the overall systemn then
are

S,=LE +14¢6 (10a)
E, =MS, + mAé (106)

An analogous form is used for the in-plane response of the lami-
nated plate,

S=LE +1A¢6 (11a)
E = MS + mA¢d (115)

where the ply and overall stresses and strains are related by
Egs. (1) and (2). Substituting into these equations. we find

H=LM : (12a)
h,=Lm +1, (126
L. = .g; ¢L, (12¢)
M= (D" (12d)
i= élc,-i, (12¢)

H, and h, are the distribution factors in Egs. (2), L. M and 1.
m = — Mil are the overall in-plane (3 X 3) stiffness and com-
pliance. and (3 X 1) thermal stress and strain matrices of the
laminated plate in Egs. (11).

In addition to the stress averages in the plies and phases. we
need to evaluate the local stresses in the matrix, at the interface
with the fiber. In doing so. one can use the approach outlined in
Refs. 8 and 9 which employs relations between interior (fiber)
and exterior (matrix) components of the strain and stress tensors
at the interface. Since the distribution of the matrix stresses at
some distance from the interface may be of interest. we have
used the procedure described in Refs. 1 and 2 where the fiber
was embedded in a large volume of the matrix, loaded at a
remote boundary by the average matrix stresses o™ in Eq. (55).
The local stresses were found from elasticity solutions. for
loading by all components of o™ and by A6,

III.  Results for the Al,O,/MoSi, System

As an application, we construct initial failure maps of a
(0/ = 45), laminate made of the above MoSi. matrix systems,
with ¢, = 0.4. The phases are taken as isotropic with elastic
moduli listed in Table I. These magnitudes were utilized to con-
struct the phase stiffness and compliance matrices. according to
Egs. (A-3) and (A-5). Then, the phase thermal strain vectors m,
were derived from the CTEs as m, = [a,. «,. «,. 0. 0. 0]". and
the thermal stress vector as 1, = — L m,. These quantities were
substituted into Egs. (6). and used in Egs. (A-5), (A-6. (6).
and (7) to find the ply properties. Next. certain rows and
columns were deleted to arrive at the plane stress forms needed
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TableI. Phase Elastic Moduli and Coefficients of Thermal Expansion for the
Al,0,/MoSi, System'?
s E (GPa) v a (X 1074°C)

°C) Fiber Matrix Fiber Matrix Fiber Matrix
1200 290 330 0.24 0.165 8.32 8.7
1000 340 330 0.24 0.165 8.18 8.7
800 352 330 0.24 0.165 7.97 8.7
" 600 360 330 0.24 0.165 7.69 8.7
400 372 330 0.24 0.165 6.24 8.7
200 376 330 0.24 0.165 6.55 8.7
20 380 330 0.24 0.165 5.60 8.7
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in the transformations (9). This was followed by evaluation of
overall laminate properties (12). Then, selected loading combi-
nations were applied to the plate element in Fig. 1, and Egs. (11)
with (3) were called upon to provide the average phase stresses.
Matrix stress distributions at the interface were then found from
the local field equations listed in Refs. 1 and 2.

Figure 2 shows the stress distributions in a unidirectional
ply under unit mechanical stresses, plotted as functions of the
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Fig. 2.

angle &, measured ccw in the x,x, plane perpendicular to the
fiber, from the in-plane x, axis of the ply. Thermal stresses
were found as well. However, because of the small differences
in CTEs, these stresses were of negligible magnitude (10~
MPa/°C). Next, the 0/ = 45), laminate was analyzed to evaluate
ply and phase local stresses under in-plane loading in the S,,S.,
and §,,S, stress planes. The local averages and maximum val-
ues evident in Fig. 2 were recorded for each ply, and identified
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with certain selected strengths. The tensile matrix and interface
strengths were taken as o3}, = 240 MPa and (o), = 50 MPa,
and the compressive matrix strength as ¢, = — 1000 MPa.
The results are plotted starting with Fig. 3. Each line in the fig-
ures corresponds to the selected maximum allowed magnitude
of the labeled stress component.

Figures 3 and 4 were constructed for the maximum tensile
stresses in the matrix and at the interface of each ply, under
overall ‘stresses §,,S.,,. The interface hoop stress o,,, which
may cause radial cracking, is represented by two branches that
correspond to points a@d; = 0° and b@d, = 90° in the
cross-sectional xyx} plane. The internal envelope, represented
here by the radial stresses at the interface, indicates the overall
stress magnitudes that would cause initial failure in the lami-
nate. Figure 5 shows a compressive failure envelope, for allow-
able compressive strengths in the matrix. Failure envelopes for
the fiber are very similar. Fiber kinking may interfere but is not
considered herein. Note that the response is linear. Therefore,
while plotted for specific strength magnitudes, Figs. 3-5 and the
following figures can be easily adjusted for any other selected
strengths by multiplying the scales by the ratio of the new/
current strength for each selection. Figures 6-8 show results
of the same kind, but for loading in the overall §,,5,, stress
plane. Again, these can be scaled for any selected strength
magnitudes. .

The allowable tensile load range is small in this system, and
may be further reduced by a lower interface strength. Damage
should start by fiber debonding. That would change the local
stresses and the positions of the failure maps. This case will be
discussed elsewhere.

IV. Conclusions

The analysis indicates how significant magnitudes of the
local stresses, caused in a fibrous laminate by uniform overall
thermomechanical loads, can be found and utilized together
with selected local strength magnitudes, in constructing initial
failure maps in the overall stress space. The maps identify the
components of local stresses which are likely to cause initial
cracking of the matrix, fiber, or their interface, in individual
plies. The results obtained for the particular Al.O,/MoSi,
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Fig. 3. Tensile failure envelope of an Al,0./MoSi,. [0/=45]. lami-
nate in the S, 5. plare. computed for o7, = 240 MPa and (™), = 50
MPa.
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(0/£45), laminate suggest the possibility of interface debond-
ing under relatively low overall in-plane normal stresses
applied alone or in biaxial tension. On the other hand. certain
overall biaxial normal and/or shear stress states of interme-
diate magnitude, which include a compressive transverse
normal stress, can be applied without risking internal damage.
While each failure map may be scaled to reflect the actual local
strengths, the positions of individual branches depend on tem-
perature-dependent magnitudes of phase elastic moduli and
coefficients of thermal expansion. In most systems. thermal
stresses induced during cooling from fabrication temperatures
will cause translation of the branches: those may be obtained
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§.,,5:: plane. computed for o7, = — 1000 MPa.
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with the present analysis. However. the effect of evolving dam-
age remains to be resolved.

APPENDIX

Suppose that the fiber and matrix moduli and coefficients of
thermal expansion are represented by continuous functions of
temperature 6. derived from experimental data. After a uniform
change A 8. from a reference 6,. applied under a uniform stress
o,. an unconstrained phuse deforms uniformly.
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8

€, = M.(8)o, + fm,(f))d& (A-D)

9

If the temperature changes under an applied uniform strain. the
stress is

8

o. = L. (e, - L,(G)fm,(é?)dﬁ : (A-2)

L

where r = f, m denotes the phase. L (§) and M.(8) =
(L.(8))"" are temperature-dependent, (6 X 6) phase stiffness
and compliance matrices, m,(8) is the (6 X 1) thermal strain
vector of expansion coefficients: their particular forms depend
on the elastic symmetry of the phase. A comparison with Eqs.
(6) sugests that the term m; A @ evaluates as the integral in Eq.
(A-1), and the I' A f as the last term in Eq. (A-2): the phase mod-
uli are taken at the current 6.

For a transversely isotropic solid. with v, as the axis of rota-
tional symmetry, and compliance matrix M. the constitutive
relation ¢ = M is written using the engineering moduli

g, \/E,, =—v./E, —vJE, O 0 0 c,

[ 1/E . -v.,/E., O 0 0 o,

£, I/E,, 0 0 ] o

e |~ /G 0 0 g,

€, C UG, 0 o.

€, SYM G, || o
(A-)

The stiffness L = M~ is best written in terms of Hill's modul:.
k= —[l/G.,, — ¥E.. + S /E, ]
n=E, + kv, =E, + /k

€ = 2kv,
m"‘G:w
p =G

The constitutive relation ¢ = Lg then s
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4

o, n (4 0 0 0 €,

o, (k+m) (k—m) 0 0 0 €,

o, (k+m) 0 0 0 €

o | T m 0 0l]e

o 4 0 €

[ SYM. 14 €
(A-4)

To estimate the overall moduli L of heterogeneous solids by
the Mori-Tanaka method, one can utilize Eqgs. (7) with the con-
straint tensors L* and M* derived as stiffnesses and compli-
ances of a cavity in the matrix, having the shape of the
reinforcing fiber.'® Simple expressions'! can be obtained using
the polarization tensor P, represented as a (6 X 6) array with
the following nonzero coefficients:

k, + 4m,
Pa=Ps =g kv m) (A-5a)
_km
Py =P, = smm_“_'_(km + m) (A-5b)
ko + 2m,,
“= Dmy (ke + m) (A-5¢)
Pss = Py, = 1/(2p,) (A-5d)

Note that P is singular, but the Eshelby tensor § = PL_, of a
transformed homogeneous inclusion in the matrix L, is not.
The constraint tensors then follow from

S=(@*+L,)'L, = M*M* + M_)"! (A-6)
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Abstract. Initial failure maps define damage-free loading regions in the laminate stress space,
such that local stresses in the individual phases and interfaces in each ply do not exceed specified
strength magnitudes. The maps arc constructed here for several symmetric laminates and
composite systems loaded by uniform membrane stresses. The (0/445) layup was selected for
the Al;03/MoSi; and SCS-6/TizAl systems, and the (0/£45/90); layup for the SCS-6/Timetal-
21S composite. Results are presented both in the Sy, 572 and $118)2 stress planes, where the x;-
axis coincides with the zero-degree fibre direction. Residual stress effects induced by fabrication
and/or thermal changes are included.

1. Introduction

It is well known that fibrous composite laminates may experience progressive damage well
before the applied load reaches an ultimate magnitude. While some applications may take
advantage of this reserve in load carrying capacity, damage of any kind is undesirable,
for example, when it causes excessive stiffness reduction, or exposes the microstructure to
corrosive environment. Therefore, it is of interest to identify load levels which guarantee
that the local stresses within the individual plies of the laminate do not exceed certain
allowable magnitudes.

The problem addressed in the present paper is to determine overall uniform stress levels
and temperature changes applied to symmetric laminated plates of any layup that cause
local stresses in the matrix, fibre, and at the interface, to reach certain critical magnitudes.
These results are summarized in the initial failure maps discussed in section 4. Any specific
failure criterion that depends on the local stresses or their combination can be selected by
the user. Similar support can be derived for strain-based criteria.

As in our previous work [12, 13, 15], the damage-free load region in a given laminate
stress plane is found as an internal envelope of many branches that reflect the local stress
maxima at fibre—matrix interfaces and in the phases of individual plies. The underlying
mechanical and thermal stress concentration factors are derived through a micromechanical
analysis based on the Mori-Tanaka method {4,21], which is developed here for systems
with both coated and uncoated fibres. We also provide for residual stress effects resulting
from fabrication and processing, or from phase transformations. In applications to the
metal matrix SiC/Ti system, the initial stresses were taken from available analysis of the
hot isostatic pressing (HIP) cycle.

Section 2 outlines the transformation field analysis method that provides a theoretical
foundation for evaluation of the local stresses within the plies. An analogous transformation
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field analysis of ply stresses in symmetric laminates appears in section 3. Applications to and
the resulting initial failure maps for several systems and layups are presented in section 4.
Detailed solutions of several inclusion problems are exposed in the appendices.

The symbolic notation used here employs bold-faced capital letters to represent (6 x 6)
or, if used with a top bar, (3 x 3) matrices; lower case bold-faced letters denote (6 x 1) or,
if with top bar, (3 x 1) vectors. The bold-faced italics E and S denote the (3 x 1) overall
laminate strain and stress vectors. Scalars are denoted by light-faced capital and lower-case
letters.

2. Local stresses and overall properties of fibrous plies

In preparation for the analysis of the laminate, we first review some of the aspects
of micromechanical modelling of unidirectional composite systems. In particular, the
evaluation of local fields and overall composite response will be presented in the framework
of transformation field analysis (TFA) developed in the last several years by Dvorak and
coworkers [8~11,14]. When used with a selected micromechanical model, the analysis
provides approximation of the instantaneous local stress and strain fields in the phases,
and estimates of the overall instantaneous thermomechanical properties of a representative
volume element (RVE).

2.1. General formulation

We consider an RVE of a matrix-based composite reinforced by aligned coated or uncoated
fibres of circular cross section. A Cartesian coordinate system z is defined such that x; is
parallel to the fibre axis. The geometry of the microstructure in the transverse x;x; plane
can be arbitrary, as long as the composite aggregate remains statistically homogeneous.
The composite is loaded by certain external tractions, derived from the uniform overall
stress @, and by uniform temperature change AT = T — Tp. In addition, piecewise
uniform eigenstrains g, can be prescribed in individual phases to account for inelastic
strains generated during fabrication and processing, or to simulate the effect of damage by
interfacial decohesion. Of course, the thermal strains could be added to these eigenstrains.

To that end, the RVE can be subdivided into certain subvolumes p,n = 1,2,... M,
where the local fields are presumed to be uniform. The local stress fields caused by the
above loads in the subvolumes will be evaluated in the form

N ‘
0,(@) =B,(@)0° + b,(x)AT = ) _F,y(@)Lyp, ¢}

n=1

where, £ € RVE, B,(z) is a (6 x 6) mechanical stress concentration factor matrix [17],
b,(x) is the (6 x 1) thermal stress concentration factor [20] and F,,(x) is a (6 x 6)
transformation concentration matrix [10]. The (6 x 6) elastic stiffness matrix L, is displayed
in detail in appendix A.

It is helpful to recall that for any two-phase composite medium, p, n = 1,2, the b, ()
and F,,(x) are related to B,(x) through the exact connections [11]. In particular, for
fibrous systems, o, n = f, m, '

b,(x) = (I - B,(z)](My, — Mp)~'(m¢ — m,;)
Fom(@) = [I = B,(x))(M, — M)™'M,,
Foi(z) = ~[1 = B,(z)}(My, — M) ™' M, 2)
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where | is (6 x 6) identity matrix, My and M, are the phase compliances, while L, = M;‘;
m; and my, are the thermal strain vectors listing the linear coefficients of thermal expansion
of the fibre and matrix, respectively. Substituting (2) into (1) provides the stress fields in
the fibre and matrix as

oi(x) = Be(x)o® + (I — Be(@)}(Mm — M) ' (Mg — M) AT + pg — pi]

Tm(T) = Bn(@)0® + [| = Bu(2))(Myy — M) ™' (M — M) AT + pie — pa]. (3)
The corresponding strain fields then follow from the phase constitutive relations
€o(x) =Myo,(x) + M,AT + 1, p=f,m 4)

Equations (3) imply that the local stress fields can be evaluated in terms of the
mechanical stress concentration factors B¢(x) and B,,(x) and elastic and thermal properties
of the fibre and matrix.

Unfortunately, the pointwise correspondence between mechanical and transformation
concentration factor tensors, equations (2), cannot be applied to the systems with coated
inclusions. In such cases, the transformation factors are usually evaluated numerically using
the finite element method. Moreover, the local fields in coated inclusion are generally
not uniform, and hence a special treatment is required to evaluate phase mechanical
concentration factors in.such systems. '

2.2. Estimates of phase stress averages

Consider a three-phase composite material reinforced by continuous fibres surrounded by a
layer of coating. Here, the relations between the local and overall stress fields are found
within the context of a variant of the Mori-Tanaka method [4]. To simplify the formulation
we admit only mechanical and thermal loading, see figure 1.

The method approximates the effect of particle interaction on the local stresses by
assuming that the stress in each fibre and coating is equal to that of a single coated fibre
embedded in an unbounded matrix medium subjected to the as yet unknown average matrix
stress o = BLo® +b, AT, figure 1, where B, and by, are the volume averages of B, ()
and b, (x) in (1).

In Benveniste’s reformulation of the method [4], the solution of a single inclusion in a
large volume of matrix loaded by o, assumes the form

o,(x) =W, (x)om + W, (T)AT with p =f, g, m 5)

where W, (x) and W, () are the partial mechanical and thermal stress concentration factors
referring to single inclusion. To determine o, we recall that the local stress components
o, and the overall uniform applied stress o satisfy the equilibrium condition

o = Zcpap forp=f,g,m (6)
P

where 3 ¢, = 1 represents the volume fraction of individual phases. Substituting (5) into
(6) provides

-1
Om = [Zcpwp] [0'0 - AT Zcpwp] @)
4 P

where W, and w, are the phase volume averages of W,(z) and w,(z) in (5). Since W,
and w, refer to single inclusion in an infinite matrix, the state of stress in the matrix is
affected only in a small volume adjacent to the inclusion. Consequently we obtain

W, =1 W, = 0. (8)
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Figure 1. Representation of Mori-Tanaka method for thermoelastic problems.

The fibre and coating volume averages of W, () and W, (z) are found as

1 1
W, = ——/ W, (z)dV w, = —-—/ wy(z)dV. 9
Vp v, VP Vo
Finally, after substituting from (7) back into (5) we arrive at the desired approximation of
o,(x).
Evaluation of W, and w, for three-phase solids is outlined in appendix B.
In the absence of inelastic effects, the overall and local strain fields are

€= Mo +mAT € =M,0,+m,AT p=1f g m. (10)
Using results obtained from (8) and (9), one can write the local stress averages in the form
0, =W,0n+W,AT with p =f, g, m. (11)

The compatibility condition, cre; + Cm€m = €, together with equations (7), (10) and an
then yield the desired results

M= [Z:c,,m,,w,,][;c'pwp]_' | (12)
m= [;cpmpwp][zp:cpwp]_l [ - ;c,,w,,] + ;c,,(M,,w,, +m,).

3. Transformation field analysis in laminated plates

In this section, the transformation field analysis, outlined in section 2.1, is extended
to symmetric laminated plates under uniform in-plane loads. The analytical procedure
combines the classical laminated plate theory for evaluation of average ply stresses under
the prescribed thermomechanical loads with estimates of the local stresses within the plies,
found as outlined in the former paragraphs.

The goal is to derive expressions for evaluation of the local stress fields within the plies,
in the locations, where damage is likely to be initiated. Those regions are usually found at
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- or in the vicinity of the fibre-matrix, or coating—matrix interfaces, where the local stresses
- exceed their corresponding strength magnitudes.

In order to prevent evolution of damage, it is necessary to identify allowable overall
stress states that maintain the integrity of the microstructure. In the present study, this is
achieved by constructing initial failure maps of laminated plates, as internal envelopes of
several branches that identify overall stress combinations which cause components of local
stresses to reach the local strength. Internal envelopes of the various branches then represent
boundaries on the allowable overall stresses that should not damage the laminate.

3.1. Overall response and ply field averages in laminates

We limit our attention to laminates consisting of 2N thin elastic plies (| = 1,2,..., N),
arranged in a symmetric layup with respect to the midplane X, X5, see figure 2. In-plane
membrane forces and the corresponding uniform stresses S = [S1y, S22, $12]7, defined in
the X coordinates, may be applied together with uniform change in temperature. Moreover,
uniform eigenstrains p; = (!, ub,, u},]7 can be introduced in pairs of plies (i), equidistant
from the midplane, such that symmetry of the laminate loads about the midplane is
preserved. In the symmetric plate, the resulting deformations are the in-plane overall strains
E = [E|1, E2, E12]7. The overall response of the composite laminate is then given in a
form analogous to (4),

S=LE+IAT +X E=MS+mMAT+ % : (13)
where the M = —LI is the (3 x 1) overall thermal strain vector, and \ = ——Eﬁ is the

. . = 3! . .
laminate eigenstress; L = M denotes the (3 x 3) overall stiffness of the laminated plate
under in-plane loads. In context of the classical laminated plate theory, the overall quantities
are derived by integrating the ply constitutive relations. over the laminate thickness

S=- / S,-dx = - / (L,E,+L,AT+A)dX . (14)
h = Jonp *Th g{ ~hi/2 v

Since the in-plane strains must be equal in all plies and the temperature change is assumed to
be uniform, equation (14) provides the plate overall stiffness matrix and the overall thermal
stress and eigenstress vectors in the form

N N _ _ N _ N
L=ZC,'L,~ '=ZC,'|,' X:ZC,‘X,’ (15)
i=1 i=1 i=1

——1

where ¢; = h;j/h,i =1,..., N represents the volume fraction of individual plies. f,- =M,

are (3 x 3) plane stress stiffness and compliance matrices of ith ply written in laminate
coordinate system X as

t,' = NTL,N, mi = RTM,R, (16)
where N; and R; represent certain transformation matrices such that
cos’; sin’y;  —3sin2y;
Rl = (N)™' = | siny; cos?y, % sin2y; |- (17)
sin2y; —sin 2y, cos 2y;

The ply stresses are related to the overall stresses S and the ply eigenstrains by

N
Si=HS+hAaT - KL, S, =N'o, (18)

/=1
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X3=x3 A

X, 1 i

Figure 2. Representative volume element

Table 1. Thermomechanical properuies of carbon coating [2].

Ey Et GL Gt v ap ar
(GPa) (GPa) (GPa) (GPa) (1075/C)  (10-5/C)
1724 69 145 3.8 03 1.8 28

L and T denote the longitudinal and transverse directions, respectively.

Table 2. Thermomechanical properties of Al;O; fibre [20].

T E v o
©) (GPa) (10-¢/C)

1200 . 290 024 832
1000 340 024 832
800 352 024 832
600 360 024 832
400 372 024 832
200 376 024 832
20 380 024 832

where o; represents the components of the stress vector in ply (i) now written in the ply
coordinate system . H; is the (3 x 3) ply stress distribution factor, h; is the (3 x 1) ply
thermal distribution factor, and K;; are the ply eigenstress distribution factors. The latter
provides the contribution to the stress S; in ply (i) due to eigenstrain ; in ply (j), both
for j =i and j # i. To establish relations between distribution factors and thermoelastic
properties of the laminate we first recall the compatibility and equilibrium of the in-plane
strain and stress components:

E,’:E ZC,S,':S. (19)

Then, equations (13), (14), (18) and (19) provide
H,‘ E,M h,' =i,' —H,'i K,'j =5ijl_'CjHi (20)

e e st
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Table 3. Thermomechanical properties of SCS6 fibre [12].

T E v o
(C) (GPa) (1076/C)

900 363 025 449
760 366 025 4.38
700 369 025 431
640 370 025 425
580 372 025 417
490 374 025 417
430 377 025 3.95
310 380 025 382
140 385 025  3.66
22 390 025 356

Table 4. Thermomechanical properties of MoSi; matrix [20].

E v L«
(GPa) - Q078/0)

330 0.165 832

Table 5. Thermomechanical properties of Tiz Al matrix [2].

T E v a
(5ireC)  (GPa) 10-5/C)

950 324 03 104
760 51.2 03 104

640 620 03 104
430 63.3 03 104
260 66.3 03 104
2 69.0 03 104

where §;; is the Kronecker delta symbol and | is the (3 x 3) identity matrix. Finally, assuming
that each ply has been subdivided into M subelements p,n =1, 2,..., M, the eigenstrain-
B; is obtained using the modified Levin’s formula

M

— T . .T .

B =R ) Bl 21
n=1

where R; is the transformation matrix given by (17) and B£ is the familiar (6 x 6) stress
concentration matrix discussed in section 2.1. Note that the summation in (21) is carried
out first and then the result is reduced to a (3 x 1) vector by deleting rows 3, 4, and 5
to conform with the original formulation of the plate problem based on generalized plane
stress assumption.

.

3.2. Local stress fields in the plies

Now that the ply stresses (18) in the laminate have been determined, we can relate the
local stresses within the ply to the overall stress S applied to the laminate, and to the local
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Table 6. Thermomechanical properties of Timetal-21S matrix {12).

T E v o
(C) (GPa) (10-%/C)
900 500 0.382 125
760 51 0378 123
700 585 0370 119
640 720 0365 1.7
580 83.0 0365 113
490 91.0 0365 107
430 995 0354 101
310 104 0361 955
140 110 0.351 896
22 116 0341 8.67
Sigma/Timetal 21S Temperature
------ Hydrostatic pressure
1000 - — 150
. 899°C J 140
900 X
1130 §
~ 800 4120 3
O o0l 1035MPa 4110 @
< T 621°C 4100 B
g eo0f 12 3
T soof 1% 3
5 470 &
Q. 400 B - 60 g
g 300 b 150 <
b= ~440 -~
200 | 430 =
100 12 &
10
oll.lll.l.,l‘l,l.l,.lno
0 25 50 75 100 125 150 175 200 225 250 275 300
Time (minute)
Figure 3. Compressive stress and temperature history applied during fabrication of the

SCS6/Timetal-21S composite.

eigenstrains within the plies. First, (1) and (18;) give

M
0, =B,R:S; +b,AT - > "F, Lipi

pnnln:
n=l

Then, using (18) and (21) in (22) we arrive at the final expression

o), =B.R;(H;S +h;AT) + bl AT
M N M I
iopi,i i T QT -iniT,,J
—Z Fann”'n - BpRi ZK‘ijRJ [ZC{IB{I “{i}
n=} Jj=1 n=1

where p,n =1,2,..., M and j=1,2,...,N. To find correct phase stress averages a;
as (6 x 1) vectors, the product R;S; in equation (22) and the products R;(H;S + h;AT)
and R; Z,N:] Ki;L;%; in equation (23) have to be augmented by zeros in rows 3, 4, and 5
into (6 x 1) vectors.

@2)

(23)
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Figure 4. Local stresses in the matrix at the fibre-matrix interface under unit traverse tension
applied to a unidirectional lamina of the SCS-6/Ti3Al system.
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Figure 5. Local stresses in the matrix at the coating-matrix interface under unit traverse tension
applied to a unidirectional lamina of the SCS-6/Ti3 Al system with coated fibres.

The first and second terms in (23) represent the local stress caused by the overall stress
and uniform change in temperature applied to the laminate, while the third and fourth
terms are the contributions of the subvolume eigenstrains in the plies to subvolume p of
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Figure 6. Local stresses in the matrix at the fibre—matrix interface under unit longitudinal shear
applied to a unidirectional lamina of the SCS-6/Ti3 Al system.
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Figure 7. Local stresses in the matrix at the coating—matrix interface under unit longitudinal
shear applied to a unidirectional lamina of the SCS-6/Ti3 Al system with coated fibres.

lamina (i). The third term provides the local stresses due to local eigenstrains in lamina
(i). The in-plane constraint £ = E; imposed on each lamina causes additional stresses in
the subvolumes of the plies when eigenstrains are present in other layers. This effect is
given by the fourth term in (23). The usual volume averaging procedure then yields the ply
average stresses.
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* TENSILE/ SHEAR FAILURE MAPS FOR 1200°C - 20°C
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Figure 8. Failure envelopes of Al;03/MoSia (0/£45); laminate in the Sy S2z-plane.

4. Initial failure maps

As an application, we constructed initial failure maps for three laminates. A
ceramic/intermetallic MoSi, matrix reinforced by alumina fibres is chosen to represent an
elastic-brittle system, while titanium-based Timetal-21S and Ti; Al matrices with the silicon
carbide SCS6 fibre represent ductile systems with a viscoplastic and elastic—plastic response
to thermomechanical loads, respectively. A 10um thick carbon coating has been added to
the fibres in the SCS6/Ti;Al system. The thermoelastic properties of transversely isotropic
carbon coating are listed in table 1. The fibre and matrix phases are assumed to be elastically
isotropic in all systems, with thermoelastic properties given in tables 2-6.

Overall properties of the selected systems were found as indicated in appendix A, and
the local stresses were evaluated using the detailed analysis outlined in appendix B. Of
particular interest were the maxima and minima of stresses at the fibre-matrix interfaces
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~ TENSILE/ SHEAR FAILURE MAPS FOR 1200°C - 20°C
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Figure 9. Tensile/shear failure envelopes of Al203/MoSiz (0/£45), laminate in the 51;512-
plane.

in each ply, the radial normal stress o,,, and the transverse and longitudinal shear stresses
0,0 and o,,. The local normal hoop stress oge in the matrix at the interface, and the matrix
normal stress a,, were also of interest. These interface and matrix stresses were regarded
as most likely to cause damage. Fibre stresses were found to be insignificant relative to
fibre strength and are not presented; relevant expressions are available in appendix B.

To illustrate the changes of the interface stress components, we show in figures 4-7
plots of these components in a uniformly loaded and initially stress-free SCS6/Ti;Al ply,
as functions of the angle 8 measured in the plane perpendicular to the fibre axis, in the ccw
direction from the x-axis that is parallel to the midplane of the ply, both for uncoated and
coated fibres. The positions and magnitudes the maxima and minima of these components
are clearly seen; both are of interest as either of their respective magnitudes may become a
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_ TENSILE/ SHEAR FAILURE MAPS FOR SCS-6 / TiAl
~ WITH UNCOATED FIBERS
AFTER COOLING FROM F.T. @ 950°C TO 21°C
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Figure 10. Failure envelopes of SCS-6/Ti3Al (0/:&45), faminate with uncoated fibres in the
S11522-plane.

dominant stress maximum under tensile or compressi-¢ overall stresses. In the subsequent
laminate analysis, these values and their locations were monitored, scaled, and superimposed
with the initial thermal stresses.

The results in figures 4-7 also show that the coating reduces the magnitudes of the
radial and shear stress components, but at the expense of higher matrix hoop stresses under
transverse tension. However, this apparent disadvantage will be seen not to extend to stress
distributions in an undamaged SCS6/Ti;Al laminate, figures 11 and 13, but may well appear,
and needs to be analysed, in other systems and layups. The desirable coating properties,
from the standpoint of thermal stress reduction, are evident in table I; i.e. the high thermal
expansion coefficient and low elastic modulus in the transverse plane. A coating with a
higher transverse modulus would offer better support for the matrix cavity containing the
coated fibre, and thus could reduce the matrix interface stresses in plies under transverse
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TENSILE/ SHEAR FAILURE MAPS FOR SCS-6/ Ti Al
WITH COATED FIBERS
AFTER COOLING FROM F.T. @ 950°C TO 21°C
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Figure 11. Failure envelopes of SCS-6/TizAl (0/445), laminate with coated fibres in the
S11522-plane.

tension and longitudinal shear.

In laminate analysis, we first considered the effect of the thermomechanical loading
histories applied during fabrication and cooling on the initial stress state in each ply of the
selected laminates. In the Al;O3/MoSi, system, the phase thermal expansion coefficients
are nearly identical, and thus the thermal stresses are of negligible magnitude. In the
SCS6/Ti3Al system, we considered the effect of cooling to room temperature from the
presumably stress-free state at 950°C. The laminate remained essentially elastic along this
path; however, significant thermal residual stresses were generated by the cooling cycle. The
SCS6/Timetal 21S system was analysed for the pressure-temperature history supplied by a
manufacturer, figure 3. Extensive inelastic deformation had taken place; this was analysed
separately in [3]. The resulting residual stresses of interest here are listed in figures 14
and 15.
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TENSILE/ SHEAR FAILURE MAPS FOR SCS-6 / Ti Al
WITH UNCOATED FIBERS
AFTER COOLING FROM F.T. @ 950°C TO 21°C
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Figure 12. Tensile/shear failure envelopes of SCS-6/Ti3Al (0/+45); laminate with uncoated
fibres in the S;)S)2-plane.

The failure maps for the above laminates are plotted in figures 8-15. The Al,0:/MoSi,
and the SCS6/Ti;Al laminates were chosen in the (0/%45); layup, and the SCS6/Timetal
218 system in the (0/£45/90); layup. All were analysed under uniformly applied overall
in-plane biaxial tension/compression S;;S,;, and shear and normal stresses Sy;S)2, with
the x;-axis oriented parallel to the zero-layer fibres. The overall stresses were applied
within a large magnitude range, as needed to accommodate the entire failure envelope.
Average ply stresses caused by the overall stresses were evaluated in each ply and the
corresponding local stresses at the interface and in the matrix were found, as they were,
for example, in figures 4-7. The initial stresses, if any, within the plies and in the
laminate were then superimposed with the respective mechanical stresses. Finally, guided
by available experimental data [7], we selected certain critical magnitudes for the radial
and shear interface stresses, and for the matrix hoop and axial normal stresses; these are
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TENSILE/ SHEAR FAILURE MAPS FOR SCS-6 / Ti Al
WITH COATED FIBERS
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Figure 13. Tensile/shear failure envelopes of SCS-6/TizAl (0/+£45), laminate with coated fibres
in the Sy;S)2-plane.

listed in figure captions. The overall laminate stresses were then scaled such as to cause,
in superposition with the initial stresses, local stresses of the respective selected critical
magnitudes at the corresponding locations within each ply. For each local stress component
of the critical magnitude, these scaled overall stresses were plotted in the Sy, S,; and $;;5)2
stress planes. These plots are usually straight lines in the overall planes, except when the
stress maxima are found at different points of the interface, resulting in piecewise straight
lines.

In the said figures, the lines are shown for each component of interest in each ply. They
divide the overall stress plane such that for overall stress combinations which are in the part
containing the origin, the local stresses are Jower than critical, while in the outlying part of
the plane, they exceed the selected critical values. Therefore, the branches that are closest
to the origin define an internal failure envelope where external loads are not likely to cause




Initial failure maps for composite laminates ' 569
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Figure 14. Failure envelopes of a SCS-6/Timetal-21S (0/£45/90), laminate in the Sj) S23-plane
at room temperature.

damage in the laminate. Conversely, if any part of this internal envelope is crossed by the
combined overall stresses, a particular damage mode is predicted.

For example, in the (0/+45);, Al,O3/MoSi, laminate, figure 8, failure by radial
debonding of the interface in the 45° plies is predicted under Sy, tension, and longitudinal
shear debonding under S); compression. For Sy, tension, radial debonding of the interface
in the 0° plies is indicated, while transverse shear debonding in the 0° plies and longitudinal
shear debonding in the £45° plies is expected to take place under Sp; compression. The
in-plane overall shear S, figure 9, promotes radial debonding in the £45° plies and, in
conjunction with the S); compression, longitudinal shear sliding of the fibres in either
0° or in the +45° plies. The (+) and (—) signs after the stress labels identify the
sign of the £100 MPa shear strength that was activated by the particular branch. The
letters a, b or c, in that position identify the interface points where the critical stress was
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Figure 15. Failure envelopes of a SCS-6/Timetal-21S (0/445/90), laminate in the § 11 S22-plane
and after reheating to 650 °C.

reached.

In the (0/£45),, SCS6/Ti3Al laminate, figures 10— 13, the overall shapes of the internal
envelopes of the critical stress branches are somewhat similar to those found for the same
layup in the Al,03/MoSi, system. However, there are significant differences in positions
of the various branches, due to the different elastic moduli of the phases, and also as a
consequence of the initial stresses that are present in this system. For example, under
pure Sy; tension, both longitudinal and transverse shearing of the fibre~matrix interface is
predicted, both for the uncoated and coated fibre systems. Note, however, that the coating is
responsible for a substantial expansion of the damage-free S); > 0 loading range, from about
73 MPa to 209 MPa, figures 10 and 11. However, a large contraction of the damage-free
S11 < 0 loading range is also indicated, as the entire failure envelope appears to translate
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toward higher tension stresses. A comparison of figures 12 and 13 suggests expansion of
the damage-free 'S}, load range due to the fibre coatings.

The branches for the interface hoop stress in the matrix lie well outside the internal
envelope, and are not activated in any of the figures. This suggests that in contrast to the
single ply case, figures 4 and 5, use of the fibre coating in the described laminates is not
contributing to contraction of the damage-free region. Comparisons of figure 10 with 11
and of figure 12 with 13 also indicate that the coatings cause a substantial expansion of the
failure envelope in the tension directions.

Finally, the failure envelopes for the SCS6/Timetal 218S system in the (0/45/90), layup
appear in figures 14 and 15, and are plotted at 21 °C and after reheating to 650°C. The
residual stresses due to cooling from the fabrication temperature are listed in the figures [3].
Note here the very small safe tension loading range, S1; < 26.7 MPa, Sy, < 26.7 MPa at RT
in figure 14, with transverse shear debonding indicated in the 90° or 0° plies, respectively.
At the higher temperature of 650 °C, the tension range expands by a factor of two in both
overall stress directions, but the predicted damage mode now changes from transverse shear
to radial interface separation.

We emphasize that all the failure envelopes shown were constructed for perfectly bonded
systems. Interface debonding or matrix cracking would substantially change the internal
stress distribution at the damage location, and thus change the position of the branches. In
particular, the matrix hoop stress branches are expected to move much closer to the origin,
as radial cracking would be likely to take place at debonded fibres.

Note that the failure maps can be easily adjusted for any other selected strengths by
multiplying the scales by the ratio of the new/current strength for each selection, and by
replotting the branches in the original stress plane.
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Appendix A. Evaluation of effective mechanical and thermal elastic properties for
two-phase composite systems

Suppose that the fibre and matrix moduli and coefficients of thermal expansion are
represented by continuous functions of temperature T, derived from experimental data.
After a uniform change AT, from a reference Ty, applied under a uniform stress O,, an
unconstrained phase deforms uniformly, :

T .
€ =M, (T)o, + | m,(1)dr. (AD)

If the temperature changes under an applied uniform strain, the stress is

T
o, =L,(T)e, -~ L,(T) m,(T)dT (A2)
To
where p = f,m denotes the phase, L,(T) and M, (T) = (L,(T))"" are temperature
dependent (6 x 6) phase stiffness and compliance matrices, and m,(T) is the (6 x 1)
thermal strain vector of expansion coefficients; their particular forms depend on the elastic
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symmetry of the phase. A comparison with (4) suggests that the term mAT evaluates as
the integral in (Al); the phase moduli are taken at the current temperature 7.

For a transversely isotropic solid, with x; as the axis of rotational symmetry, the stress—
strain relation

o=Le—mAT — ) (A3)
is usually written in terms of Hill’s moduli
[ea] n { l 0 0 0 6|—n1]AT—[.L|
03 I (k+m) (k=—m) 0 0 O € — mrAT — i
g3 _ I (k—=m) (k+m) 0 0 O 63-"12AT—'M3 (A4)
g4 - 0 0 0 m 0 0 €4 — g
Js 0 0 0 0 p 0 €s — s
O¢ 0 0 0 0 0 p €6 — Ug
where
k=—[1/Gy —4/Ep + 4}, /E\)"! [ =2kvy

n=E”+4kv,22=EH+12/k m = Gnn p =G,

To estimate the overall moduli L of heterogeneous medium one can use the Mori-Tanaka
procedure outlined in section 2.2. Recall that in the reformulation of the Mori-Tanaka
method by Benveniste [4], the local fields in the fibre are approximated by those found
when single inclusion is embedded in a large volume of matrix and subjected to remotely
applied average stress in the matrix, o,. The single fibre problem can be easily solved for
fibres with circular or ellipsoidal cross section, in terms of Eshelby’s tensor S. If this is
the case, the stresses in the fibre are uniform and can be written, in analogy with (5), in the
form :

or = Wio, (AS)
where the partial concentration factor W, is given by
Wi = Ll + SL; (Ls — L)) 'L (A6)

The Eshelby tensor S can be obtained in terms of the polarization tensor P = SL>!,
represented as a (6 x 6) array with the following non-zero coefficients [25]

ky +4mp ~km
Ppop=Ppy=—"" T _ Pyp=Pyp=—-———
2 3 8mm(km + mp) 2 2 8y (km + Mmp)
km + 2mpy

44 Pss = Pes = 1/(2pm). (AT)

= 2l + )

Note that P is singular, but the Eshelby tensor S = PL,,, of a transformed homogeneous
inclusion in the matrix L, is not.
The total stress concentration factors B¢ follow from (7)

Br = We(cml + cfWp) ™! Br = (cml + csWp) ™. (A8)

Under purely mechanical loading o, the overall and local mechanical strain averages
written as

€ =Mo° e, =My, p=fm (A9)

provide, together with connection cre; + cméen = €, the estimate of the overall compliance
matrix M [17], see (12)),

M = :M;B; + CnMmBnle MW, + cmMpl(cml + C‘fo)'l (A10)
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while the stiffness L = M~!. Finally, in analogy with (4) we can include the thermal and
inelastic effects MAT + p into (A91). These two parts of the overall stain can be found
from generalized Levin’s formula (11}

MAT + p = e BI(MAT + p,,) + cuBL(MAT + ). (A1)

Appendix B. Evaluation of partial mechanical and thermal stress concentration
factors

B.1. Solution procedure |

First the partial stress influence functions W, (z) and W, (z) are evaluated as a superposition
of the following loading cases:

1. Axial normal stress

2. Transverse hydrostatic stress

3. Transverse shear stress

4. Transverse tension stress

5. Longitudinal shear stress.
We now proceed to derive stress fields as a solution of three independent auxiliary problems.
In what follows, we shall use indices f, 8. m referring to the fibre, coating and matrix,.
respectively. Also, cylindrical coordinate systemr, 6, z, figure 16, is adopted in the analysis.

X3

Figure 16. Geometry of coated fibre.

B.1.1. Auxiliary problems. (i) Loading cases 1, 2: axisymmetric stress. The remotely
applied stress can be decomposed into uniform normal stress o = py in the fibre direction

and into an isotropic stress o, = 03 = oy in the transverse plane, figure 17. The
axisymmetric displacement field has the form '
u, = C|f

f
ut = Cyr + Cy/r (Bl)
:n = C4r+C5/r
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Figure 17. Axisymmetric loading case.

uz =ut=ul" = egz.

The stress field can be then found through the constitutive law as

of = 20Cy + nee — (ns + 2t AT
o} = 0f = 2kCy + Ie® — (Ir + 2kpaf AT
of =204Co + nge] — (ng + 2yp)al AT
Of = 2kgCa — 2myCs/r? + lge? — (I + 2kp)a] AT
05 = 2kgCa + 2mgCs/r’ + 1€l — (I, + 2kg)a T AT (B2)
07" = 2nCy + el ~ (nm + 2 )k AT
O = 2knCa ~ 2mnCs/r + Ine? = (I + 2k} L AT
05 = 2kmCs + 2muCs/r? + In€® — (I + 2kp)al AT
where ki, kg, km, Iy, lg, Iy, ng, ng, and np, are Hill's elastic moduli of the phases.

The corresponding boundary conditions used to determine unknown integration constants
Ci,..., Cs are ° '

f—ys f— ot =

u, = ut g, =0of atr =a

g8 — ym [ =

uf = u of =0 atr=»% (B3)
o =0y atr — oo.

The last condition is obtained as
a;"(l) = po. (B4)

(i1) Loading case 3: transverse shear. The remotely applied stress is now defined as,
figure 18,

oy = 0y oy = —0p po = 0.

Since the pure shear is usually applied in the Cartesian coordinate system according to
figure 18, we shall substitute for the rotational angle § by ¢ = 6 — 45° to account for
the coordinate transformation. Following Christensen and Lo [6], the displacement field is
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found in the form

575

bo, _
f 0
—1C 33 + Cy— | cos2
u, = 4mf[ 6(ng — ) 7b:| ®
. bo R
f 0 .
= e— 3 - - C - 2
Uy . [C6(’lf+ )b3 7b:| sin2¢
bog r? r b b3 _
il =35+l + G )=+ Ciy— | cos2 BS
ut p=y [Cs(ﬂg 3)b3 + Cgb + Cio(ng + )r + 11—y | cos ¢ (B3)
ba r? b 1 -
uy = _O[Cb(”&'*" 3N _C9‘r’ —Clo(ng—1)~+Cn—3] sin2¢
‘e b r r
bog | 2r b b3
rrn = ——4mm[ 5 + Ci2(Mm + l)r + Ci3 3:|0052¢
. boy 2r b b
pa = —_—— P
Ug 4mm|: b Cr2(nm — D= +Ci3 3}sm2q§
where
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Figure 18. Transverse shear loading case.

= (ki +2mi)/ ki

and the stress field is given by
2

30’0 r -
= 2_mc6lf(m - 1); cos 2¢

of

2mf

O r
of = "'0_{C6[3kf(’7f = 1) —bmf]—

i=fgm (B6)

2

B2 + C‘]mf} cos 2¢
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f (o1 f2 . -
0y = =— 1 Ce[3ke(ns — 1) + 6m¢)— — Cym¢ } sin2¢
2"1( b*

2 2

r b :
of = 7’3C8[ (ng — )5 = Ciolg(ng — l)ﬁ}cos&p

2
¢ b
2

o] r
of = —2—':;: {Cgl:3kg(ng - - 6’712]))—3 + Com,

2

b b? oz
~Ciolkg(ng = 1) + 2mg];—2 - 3C”mg;-4— cos 2¢

5

[eNh) r
ogg = ﬂ—g—[Cg['}kg(ng -+ 6mg}ﬁ = Comy

b* b* -
—Crolkg(ng ~ 1) — 2"’g]ﬁ + 3Cnmg;: I cos2¢ (B7)
2 2 3
Co b 3 b -
9 = 00[3C8ﬁ - 7 - C]Oﬁ - ~2—C|1;] sin 2¢

2

o b -
o = ﬁcnzmu = Tim) = €05 26

m b? b?
o = 2m 2mpy — Cialkm(nm — 1) + 2mm]—— — 3C|3mm cos 2¢
m

oo 2 b4
o = 5 l2mm - Cralkm(nm — 1) — 2mm]-— + 3C|3mm }code)

m
¥ 3 bp*l . -
a,fe = —ao[l + Cl2_2 + —C13—4 sin 2¢.
r 2 r
Unknown integration constants Cs, ..., C)3 follow from the interface continuity conditions
ufl =u8 ofy =0t of =of atr =a
ub=u" ok =05 ot=0" atr=> (B8)

Cro] + Cyof + Col” =0,

(iii) Loading case 4: transverse tension stress. The solution of this problem is found as
a superposition of transverse hydrostatic stress and the transverse shear stress as shown in
figure 19. However, in (B7) the angle ¢ is now replaced by 6.

(iv) Loading case 5: longitudinal shear. In this problem we have to distinguish two
different cases. Particularly, in the first case the remotely applied stress is 0y, = Tp, whereas
in the second case the remotely applied stress is 0, = 7 as shown in figure 20. We shall
first consider t.he case when o0y, = 73. The displacement field has the form

z = Cj4rsiné
ut = (Cysr + Cig/r)siné (B9)
uy; = (Cyqr + Ci3/r)sinf
r=up=0 r=f.gm
The stress ﬁeld can be then written as

U,fZ = Cy4pssiné
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Figure 20. Longitudinal shear loading case.

Ue{z = Cy4prcosf

08 = py (Cis — Ci¢/r?)sin6

aegz =pg (Ci5+ Cis/r?) cos6
07 = pm (C17 — C1g/r*)sin@
941 = pm (Ci7 4 Ci8/r?) cos @

577

(B10)

and the corresponding interface continuity conditions together with traction boundary

conditions are

f
u rz

e e

U = lltn

— ;8 — 8
=u; g _Or:

g — 48
of: =0,

atr =a

atr=25%

(Bl
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o =1 atr —» Q.

For the second case, 0., = 19, the displacement field is given by

uﬁ = Cy4r cos 8

ut = (Cysr + Cig/rycosf

uy = (Cyqr + Cig/r)cosé (B12)
ul =up =0 r=1fgm

and the stress field has the form

ai = Cqpscosb

= —~C4pgsiné

08 = py(Cis — Ci6/r%) cos (B13)
crogz = —pe(Cis + C,(,/r:) sin

o7 = pm(Ci7 — Cig/r¥ cos

0g: = —pm(Ci7 + Cyg/r rsme

subjected to the following boundary conditions:

f_ 8 g _gm =

u, = ut of =00} atr=a

- g — oM =

ué =u; ol =0 atr =b (Bi4)
ol =1 at r —» 0.

The required local stress fields serve to derive the partial stress influence function W, ()
and wW,(z) by employing the superposition procedure outlined in Dvorak et al [12].

B.2. Solution procedure 2

The second step involves evaluation of the partial stress concentration factors W, and w,,.
Since W, = | and Wy, = 0 the evaluation need to be carried out only for fibre and coating
phases, respectively. This can be done by evaluating a fibre and coating volume averages
of the components of W,(x) and w,(x), where p = f, g. First the local stresses found
above are transformed into the Cartesian coordinate system to conform with the original
formulation of W,. The phase volume averages of the local fields are then found as

1 2n pa pz
O = 5 / / / o¢(r,8)r dzdr dé
mra‘zJo Jo Jo

_ 1 27 b pz
ag=m/0 /a/oa'g(r,e)rdzdrde. ‘ (B15)

Results for particular loading cases follow.

(1) Loading cases 1,2: axisymmetric stress. Equations (B2) and (B15) provide

=t _ _f

o, =0,

= _=f _ f_ _f .

0,=0,=0,=0, (B16)
o8 =gt

Z Z

T8 =T% = 2k,Cy + el — (g + 2ky)a] AT.
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(ii) Loading case 3: transverse shear. Using equations (B7) and (B15) we obtain

1 3 a?
'U_E = 0y (—Ce. - -—C7a—_>

2 2 b2
7 = -5t (B17)
3a24+ b2 C
E% = 0y (—— b2 Cg {)
7% = —ot.

(1ii) Loading case 5: Longitudinal shear. Providing that o, = 19, equations (B10) and
(B15) yield

= —F2 —
ze—axz—o

7). = piCus (B18)
5. = pyCis.

In the second case, when o,, = 1, the average stress components are given by
3§_: = 5_%: =
Ty = PiCis (B19)
0, = PgCIS

Note that up to now the remotely applied stresses oy, po, To and uniform temperature
change AT were equal to unity. The partial stress influence functions W, and w, then
follow from the superposition procedure already mentioned in the previous section. Above
results together with (5) can now be used to estimate the average stresses in the matrix.
Desired stress concentration factors B,(x) and b,(x) can be finally derived through the
solution procedure 1, where the remotely applied stresses are at this time set to be equal to
the average stresses in the matrix.

It can also be shown that if we furnish a coating with the matrix material properties,
we arrive at the same result as for two-phase medium.

References - :

[1] Bahei-El-Din Y A, Shah R S and Dvorak G J 1991 Numerical analysis of the rate-dependant behavior of
high temperature fibrous composites Mechanics of Composites at Elevated and Cryogenic Temperatures
(ASME AMD 188) ed S N Singhal (New York, NY: American Society of Mechanical Engineers)

- [2] Bahei-El-Din Y A, Dvorak G J and Wu J F 1995 Mechanics of hot isostatic pressing in intermetallic matrix
composites J. Mater. Sci. 30 1-23

[3] Bahei-El-Din Y A and Dvorak G J 1996 Isothermal fatigue of Sigma/Timetal 21S laminates, II. Modelling
and numerical analysis Mech. Comp. Mater. Struct. to appear

[4] Benveniste Y 1987 A new approach to the application of Mori-Tanaka's theory in composite materials Mech.
Marer. 6 147-57

[5] Benveniste Y, Dvorak G J and Chen T 1989 Stress fields in composites with coated inclusions Mech. Mater.
7 305-17

[6] Christensen R M and Lo K H 1979 Solution for effective shear properties in three phase sphere and cylinder
models J. Mech. Phys. Solids 27 315-30

[7] Clyne T W and Withers P J 1993 An Introduction 10 Metal Matrix Composites (Cambridge: Cambridge
University Press)

[8] Dvorak G J 1990 On uniform fields in heterogeneous media Proc. R. Soc. Lond. A 431 89-110

[9] Dvorak G J 1991 Plasticity theories for fibrous composite materials Metal Mairix Composites. Mechanisms
and Properties vol 2. ed R K Everent and R J Arsenault (Boston: Academic Press) pp 1-77




580
[10]
{11
(12]
(13]
{14]
(15

{16]

(17]
(18]
(191

120
21]

Puer}

(22
(23]
24

{25}

G J Dvorak and M Sejnoha

Dvorak G J 1992 Transformation field analysis of inelastic composite materials Proc. Roy. Soc. London A
437 311-27

Dvorak G J and Benveniste Y 1992 On transformation strains and uniform fields in multiphase elastic media
Proc. Roy. Soc. London. A 437 291-310

Dvorak G J, Chen T and Teply J 1992 Thermomechanical stress fields in high-temperature fibrous composites.
I Unidirectional laminates Comp. Sci. Technol. 43 347-58

Dvorak G J, Chen T and Teply J 1992 Thermomechanical stress fields in high-temperature fibrous composites.
II: Laminated plates Comp. Sci. Technol. 43 359-68

Dvorak G J, Bahei-El-Din Y A and Wafa A M 1994 Implementation of the transformation field analysis for
inelastic composite materials Model. Simul. Mazer. Sci. Eng. 2 571-86

Dvorak G J and Sejnoha M 1995 Initial failure maps for fibrous CMC laminates J. Am. Ceram. Svc. 78
205-10

Dvorak G J, Sejnoha M and Srinivas M 1996 Pseudoplasticity of fibrous composite materials [UTAM Symp.
Micromechanics of Plasticiry and Damage of Multiphase Materials ed A Pineau and A Zaoui (Dordrecht:
Kluwer) pp 43-50

Hill R 1964 Theory of mechanical properties of fibre-strengthened materials: ‘1. Elastic behaviour J. Mech.
Phys. Solids 12 199-212

Hill R A 1965 A self-consistent mechanics of composite materials J. Mech. Phys. Solids 13 213-22

Hill R 1972 An invariant treatment of interfacial discontinuities in elastic composites Continuum Mechanics
and Related Problems of Analysis (N | Muskhelishvili 80 Anniversary Volume) ed L 1 Sedov (Moscow:
Acad. Sci. SSSR) pp 597 _

Laws N 1973 On the thermostatics of composite materials J. Mech. Phys. Solids 21 9-17

Mori T and Tanaka K 1973 Average stress in matrix and average elastic energy of materials with misfitting
inclusions Acta Mezal 21 571

Shakelford J F and Alexander W (eds) 1992 CRC Materials Science and Engineering Handbook (Boca Raton,
FL: CRC) pp 360-62, 53140, 560-92

Tanaka K and Mori T 1972 Note on volume integrals of the elastic field around an ellipsoidal inclusion
J. Elasticity 2 199

Wafa A M 1994 Application of the transformation field analysis to inelastic composite materials and structures
PhD Thesis Rensselaer Polytechnic Institute, Troy, NY

Walpole L J 1969 On the overall elastic moduli of composite materials J. Mech. Phys. Solids 17 235




CONVERGENCE OF THE MULTI-GRID METHOD FOR A
PERIODIC HETEROGENEOUS MEDIUM. PART 1: 1-D CASE

Jacob Fish and Vladimir Belsky
Department of Civil Engineering and Scientific Computation
Research Center,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA

A multi-grid method for a periodic heterogeneous medium in 1-D is presented.
Based on the homogenization theory special intergrid connection operators have
been developed to imitate a low frequency response of the differential equations
with oscillatory coefficients. The proposed multi-grid method have been proved
to have a fast rate of convergence governed by the ratio q/ (4 - q), where
0<g <1 depends on the microstructure. This estimate reveals that the rate of
convergence increases as ¢ — 0, which corresponds to the increasing material
heterogeneity. Numerical results have been found to be in good agreement with
the theoretical estimate.

1. Introduction

The sequence of three papers presents a multi-grid method for a periodic heteroge-
neous medium. In the first paper we limit ourselves to 1-D problems. We believe that it
is essential to demonstrate the fundamental ideas of the proposed methodology, includ-
ing the mathematical formulation and convergence analysis, in one-dimensional con-
text, first, because the rate of convergence can be only estimated in the closed form for
1-D problems and secondly, because these studies will serve as a vehicle of subsequent
derivations in multidimensions. In the two upcoming papers we will extend this formu-
lation to multidimensions (part 2) and will incorporate adaptive features (part 3).

In the first part we consider the boundary value problem for differential equation
L (K (D) Zu) =f(0),x€ (0.1),u(0) = 0,u(l) =0 ®
where K (y) -is 1-periodic functionof y€ (0, 1),y = x/¢, such that

K(y) 2K,20

Since € is assumed to be small, we have the differential ecjuation with rapidly oscillato-
ry coefficients.




The traditional approach for solving this problem uses a double scale asymptotic
expansion

u(x,y) = W0 (x,y) +eu’ (x,v) + e2u’ (x,y) +... )

where x and y are macroscopic and microscopic co-ordinates, respectively. Under the
assumption that the terms u* (x, y) are 1-periodic functions in the y variable, it is pos-
sible to obtain two separate boundary value problems. The former describes the micro-
scopic behavior of the solution; and the latter reflects the macroscopic behavior. The

fundamentals of this theory can be found, among others, in [1,2,3].

It is well known [1] that in the limit of € — O the solution of the source problem (1)
approaches weakly in the energy norm the solution of the boundary value problem with
homogenized coefficients. Unfortunately, in many practical situations when the value
of € is finite and the solution of the homogenized problem has high gradients, the
homogenization theory may err badly in comparison with the exact solution of the
source problem (1). The most significant errors are encountered in the portions of the
problem domain where the solution has high gradients [4]. Ironically, these are pre-
cisely the regions of major interest from the practical standpoint.

One of the alternatives to homogenization is a multiscale computational approach [4].
By this technique a portion of the problem domain where homogenization procedure
has been found to be inadequate by means of microscale reduction error indicators [5],
is modeled entirely on the microscale, i.e., a finite element size is of the same order of
magnitude as that of microconstituents. In the remaining portion of the problem
domain, the details of microstructure are ignored and the finite elements are assumed to
have effective material properties[4]. The system of linear equations arising from such
multiscale computational technique can be solved exactly or approximately by either
relaxing traction continuity or by displacement compatibility conditions between the
two regions. The latter case is a typical global-local approach [6] which does not guar-
antee a reliable force transfer to the local region of interest. On the other hand, a solu-
tion of the coupled system of equations at several different scales may not be
computationally feasible.

In this paper we propose a novel approach which takes advantage of the special nature
of differential equations with oscillatory coefficients in order to develop fast iterative
solvers for system of linear equations arising from such differential operators. This is
accomplished using a multigrid solver with special intergrid connection operator.

The classical multigrid approach with standard linear interpolation operators is not




well suited to approximate the low frequency response, mainly because the low fre-
quency eigenvectors are not smooth in the case of differential equations with oscilla-
tory coefficients. On the other hand, the solution based on the homogenization theory is
in good agreement with the lower frequency response of the exact solution of the
source problem (1). The basic idea of the proposed methodology is to construct such
intergrid connection operator so that the problem on the auxiliary grid would be identi-
cal to that with constant effective material coefficients.

It will be shown that the rate of convergence of the proposed two-grid method is
mainly governed by a factor ¢/ (4 ~ q) , where g ranges from one to zero depending
on material heterogeneity. For example, g = 1 corresponds to a homogeneous mate-
rial, while in the case of two phase material with constant coefficients the value of g
reduces as the heterogeneity increases, and thus the rate of convergence improves.

The contents of the paper are as follows. Section 2 presents the multi-grid technique
based on the homogenization theory. Section 3 describes the solution of the eigenvalue
problem for periodic heterogeneous medium in 1-D case. These eigenvalues and eigen-
vectors are found in close form in order to estimate the rate of convergence of the two-
grid process. In section 4 the convergence estimates are presented. In section 5 we con-
duct several numerical examples to study and validate the present formulation.

2. The fundamentals of multigrid m for a periodic heterogeneous medium
Consider a system of linear equations resulting from the piecewise linear finite element
discretization of the source boundary value problem (1)

Au=f ueR' feFR 6)

Here A is the n x n symmetric and positive definite tridiagonal matrix; 4 and f are n-
vector functions corresponding to the initial fine grid where each phase is discretized
by at least one finite element. The boundary conditions have been incorporated into this
system of equations.

Following the traditional multi-grid technique we introduce the auxiliary coarse grid.
We denote the corresponding auxiliary grid functions with subscript 0. For example,
uq denotes the nodal values of the solution in the auxiliary grid, where uy€ R™, m<n.
We also denote the prolongation operator from the coarse grid to the fine grid by Q:

QeR" S R" : )
The restriction operator Q" from the fine-to-coarse grid is conjugated with the prolon-




gation operator, i.e.:

Q*eR" 5 R" ®)
We use superscripts to indicate the iteration count. Let r* be the residual vector in the i-
th iteration defined by
oA ®)
where u' - is the current approximation of the solution in the i-th iteration.

The problem of the coarse grid correction consists in the minimization of the energy
functional on the subspace R™, i.e.:

1/2 (A (4 + Qug), u + Quf) ~ (F, u' + Qub) — min
ug€ R™

4]

where (.,.) denotes the bilinear form defined by

n
(u,v) = uy; u,veR"
A direct solution of the equation (7) yields a classical two-grid procedure. Alterna-
tively, one may introduce an additional auxiliary grid for uq and so forth, leading to a
natural multi-grid sequence. To fix ideas we will consider a two-grid process resulting

from the direct minimization of (7)
Aouf) - Q* f- Aui) t.))

where Ay = QAQ -is the restriction of the matrix A. The resulting classical two-grid
algorithm can be written in the following manner:

a) coarse grid correction:
f—f—Ad
i o A=lp*y
Ug= Ay Qr 9)
0=+ Qua
where &' is a partial solution obtained after the coarse grid correction;




b) smoothing:
u'*' = 7 +D(F- A (10)
If the Jacobi method is employed for smoothing then

D = o(diag(A))~! (1)

where ® is a weighting factor. Note that in practice it is possible to carry out several
smoothing iterations within a single coarse grid correction.

For each iteration we can associate the error vectors €', €' defined by
i i ~i "ui
e = u—u e mu-u (12)

where u is the exact solution of the source problem. Then the error resulting from the
coarse grid correction (9) can be cast into the following form

¢ = (I-Q45'Q*a) ¢ 13)
where / is the identity n x n matrix. Combining equations (10),(12), the influence of
smoothing on error reduction is given by:

and from the equations (13), (14) the error vector of the two-grid process with one
post-smoothing iteration can be expressed as:

é*! = (I-DA) (I-QA; Q*A) ¢ s
For subsequent derivations we will use the following notations:
G=1-DA
T=1-Q4;'Q%A

Then (15) can be rewritten in the following form

(16)

¢t = GTE an
It is essential to note that T and S = [/ - T are the A-ortogonal projectors [7], namely:

(ATv,Sv) =0 VveR" (18)




2 2 2
Ivlig = UTviy +1Svily (19)

which yields that

1T, <1 (20)
Note that the projector T eliminates the effect of the prolongation operator, i.e.:

70 =0 1)

Now we will turn to the central question of how to construct a prolongation operator
Q, for the case of periodic heterogeneous media, so that the auxiliary grid will not con-
tain the details of the microstructure, but on the other hand, will accurately match the
low frequency response of the source problem. Prior to answering this question, it is
necessary to review some fundamental concepts of the mathematical homogenization
theory. -

Following the classical homogenization theory, an approximate solution of (1) can be
obtained using a two-term asymptotic expansion given by

u(x,y) = u(o) (x) +eu(l) (x,y) (22,
where u? (x) is the solution of the homogenized boundary value problem with con-
stant coefficients and

1
u® (x,y) = HD (y)dixu(o) (x) 23)

Here 4V (y) is 1-periodic function in the y variable. Employing the classical pertur-
bation technique [1,2,3], we obtain two uncoupled boundary value problems. The
former is the problem in the function H‘" (y), which describes the microscopic
behavior of the solution:

—d k() LHD (y)) =4
dy (K (y) dyH ) dyK (y)

0<sy<l1 249
HY 0 =0 HY (1) =0

The latter is the bouhdary value problem for the macroscopic solution

- 2 '
~KLu® (x) = £(2), 4@ 0) = 0,u® (1) =0 @s)

dx




where K - is the homogenized effective coefficient given by

1
K=K AH? +1)a
‘[ M G ) dy

For subsequent derivations we will employ the following well known relations [1-3]:

1 1

2
K-l[K(y) (FH " + l)dy-l[K(y) (GH+D @

1 -1 (26)

- Q‘(K(y))"dy)

y
HY (y) -‘[ K(&) - 1) dg @n

The basic idea of the proposed multigrid formulation is to construct the prolongation
and restriction operators on the basis of the equations (22) and (23). It will be shown
that the resulting auxiliary problem would be very effective at eliminating low-fre-
quency components of error and/or residual which are not smooth in the case of heter-
ogeneous medium. Moreover, it will be shown that the matrix A, of the auxiliary
system (8) corresponds to the finite element approximation of the homogenized bound-
ary value problem with the effective coefficient (25).

Consider a one-dimensional model problem, shown in Fig. 1. The source problem is
discretized with / (/> 1) finite elements inside each unit cell. For each finite element
the material properties are constant, K = const. The auxiliary grid nodes coincide
with the unit cell boundaries. We denote the length of the unit cell by /# and the total
number of unit cells by m — 1. Then the prolongation operator Q can be expressed in
the following manner:

1
[Qugl = [ugl ,(1-y) + [ugl,, ¥+ H}" ([ug],, = lug] )
k= (i=1)I+j lSsz-l 1<l
where y; = (x(;_jy4j=%@-1y1+1) /h forany i; 0<y;<1 are the local co-ordinates

28




M _ gD

of the grid nodes inside the unit cell; H (v ) are calculated from (26), (27).

It is convenient to define the linear interpolation operator by 0, which serves as the tra-
ditional prolongation operator in the classical multi-grid approach for the second order
equations. Then the proposed prolongation operator is given by

[Quql, = [Quql  +H;" ([ug],, = [ug]) @9

The course grid operator, A;, can be constructed on the basis of (28). We assume that
the same piecewise linear finite element shape functions are used for discretization of
the initial boundary value problem (1) as well as for the unit cell problem (24). Denot-
ing the shape functions on the fine grid by M (x), 1 <j<n,n = (m=1)[+1 and
using (28) we obtain the following approximation of the solution after the prolongation

n
u(x) =3 N (x) [Quol, 30)
Jj=1
Note that the shape functions of the auxiliary grid, Nf) (x) , can be expressed as a linear
combination of ¥ (x)

n
Nb(x) = ZN’ (x) [ée;,] . 1<ism G1)
. =

where e € R" is a unit vector in the auxiliary grid, satisfying the fundamental relation
of [eo] = 3,;, and ; - is the Kronecker delta. Note that Ny (x) are the piecewise lin-
ear finite element shape functions for the auxiliary grid with a single finite element in
each unit cell. Derivative approximation on each element i in the auxiliary grid is
given

[u'o] = [Z (No) " [ugl,

im]

([uo]“l" [uo]k)
A h 32)

l1<ks<sm-1

Combining (29) - (32) we obtain the following expression for the approximate solution
after prolongation




m-1l+1 m

u(@ =Y (N lugl + ¥ YN0 H,-‘”h{z

k=1

]

ks,
i=] i=]lj=]

Note that periodicity implies that

NI () w N (hy) = W ()
. X . (34)
1<j<li y-z—(l-l) O<y<l1 Viil<ism-1
Differentiation of (33) and accounting for periodicity (34), yields

m

u (x) = Zl (N0 Lugl , (1 + LH D (3)) 69
l+1

where din () (y) = %ﬁ/ (y) (H j) () and Hj(l) is the discrete solution of the

microscopic problem (-45 at the FE nodes Y;, which is obtained on the basis of the
finite element shape functions ﬂ/ ).

Finally, auxiliary grid discrete operator Ag can be obtained by combining (30), (35)
and (26), which yields

n n /
[40] -p;q; ( ‘[K(g) N (x) N () dx) [Qeol , [Qep]
1

2 . .
- !({K(y) (24};11‘” +1) dy) (N§(x))” (N (x)) “dx (36)
)

-!lz'(Nf,(x))’(N{,(x))’dx 1<ism 1<j<m

It can be seen that the restriction of the source matrix A using the prolongation opera-
tor (28) corresponds to the finite element approximation of the boundary value problem
(25) with the effective coefficient. -




3. The eigenvalue problem for the periodic heterogeneous medium in 1-D case
This section deals with the eigenvalue analysis of the model boundary value problem
with the periodic coefficient

~d (kX4 = - -
dx(K(e)dxu) Au,x€ (0,0),u(0) =0,u(l) =0 &)
where K (y) is chosen as follows:

K KI,OSyS(l—a)
O = A, (1-a) <y<1 o9
and o represents the volume fraction, 0<a <1,

In the following we present a closed form solution of the discretized eigenvalue prob-
lem (37), (38), which is required for estimating the rate of convergence of the proposed
two-grid method.

The eigenvalue problem defined by (37), (38) is discretized with two elements on each
unit cell as shown in Fig. 2. Nodal values corresponding to the boundaries of the unit
cells are denoted by u;, 1 <i <m, while the corresponding nodal values inside the unit
cells are defined by u; ;, , 1 <i<m~1. The number of the unit cellsis m - 1.

~

The effective material properties, K, for a model problem defined by (38) follow
immediately from (26)
F K\K,
“K(-o +Ka

39)

Proposition |
Consider a heterogeneous medium formed by a special repetition of the unit cell (38).
Each Pnit cell is discretized with two elements as shown in Fig. 2. Let
(&:k, A ),1sk<m-1,m = m-1, be the eigenvectors and the eigenvalues of the
discretized eigenvalue problem with the homogenized effective coefficient (39), and let
Ep:i +p 1 Si<m—1 be aresult of prolongation of the vector ?pk to the interior node in
the unit cell i in accordance with (28) and (27), i.e.:

Vi = BB+ (1=B) B, @
where

10




d,

1)

Furthermore, let (¢*, AY), | Sk<7/i—1,7 = 2/ be the eigenvectors and the eigenval-

ues of the discretized problem (37), (38).

Then the Proposition 1 claims that the eigenvectors and the eigenvalues of the one-

dimensional problem in the heterogeneous medium (37), (38) are given

bt sk
T A
b"+1

k ~ k . A k - kAk .
P =9 lsism @, =0, 18ism-1

Af -

Aok o _bf 5k
bF -1

- ~ k . 7 - kak .
Pk = . 1<i<m cpzifl-bqai’“_l,lSsz—l

i ditds
a(l-a)h
E - F ,a % o :
g =0,1<ism Pr, =1 q:i'i+1-—d—lq>,._l.i,2$sz—l
where
1
bt = 3 4=4B(1-B)
(1-gd' 2y

4K

(42)

(CX)]

11



ak 4K ) km
A - Sin (5-;’1:)
A . .—1 k
@f’sln(-(l—.—)—n),ISISm (44)
m
l<ksm-1

Proof of Proposition 1

Consider a discretization of the eigenvalue problem (37), (38) on the basis of the linear
finite elements:

- (1 f;)hq’f"'l{lo:(-figha) ‘me-g,z,q’fn'*%fm
1<ism-1
* —’cf_}zz(pf-l-"."KlO;-‘(.fi:);a) P - (1ftx)hq’:i+1'}‘k¢’f @s
2<ism-1
?1=0 of=0
( l<k<n-1

Inserting (41) into (45) yields

k k 2k & .
q’i,,'”“(ﬁq?f*'(l—ﬁ)cp,-,l) = A9 i lsism-1

~k .
P - ((1=-B) gt +Bet,, ) = Ag! 25ism-1 49)
Pr=0 =0 1sgk<i-1
where
sk a(l=-a)h_;
A= d,+d, A

12




Taking the following expression from (42)
kA Kk

P =9 l1gism
k ~ K l1<ism-1
Piiv1 =P i
l1<sksm-1

and combmmg it with (40) and (46) ylelds
(b- 1)<p“+1 kbcp”“ 1<ism-1

Kk ~k .k ~k-a-b—l .
1=Pi 1 +29, -9, = 5(I=P)B ﬁ)ﬁ‘ 2<ism-1

Ep'f-o ?pm-O 1Ssksm-1

The above can be satisfied for any eigenvector, Epk, of the homogenized problem if, and
only if, the following holds

(b=1) = A b
Y 4 ~k
Ah A+b-1
kK b(1-B)p

from where follows

1 =k b-1
b==% A,-_b_

r 2

- Ah
(l_ﬁ(l-ﬁ)_i?)

b—1 d;+d, b sk

k
A b a(l-a)h-b+ll

The pos1t1ve values of b lead to the eigenvalues and exgenvectors of the form given in
(42) with bt = b, while the negative values of b correspond to b* = —b.

The middle eigenvalue and eigenvector m in (42) follows directly from the eigénvalue
problem (45). The eigenvalues and eigenvectors for the homogenized discrete eigen-
value problem can be found, among others, in [8]. (] |




To this end, we summarize the results of this section in the following compact notation

km
¢ 4K sin (—E)

A-T %)

1+ (l-qsinz(—z.i))

sin (k_n)

-k 4K
A. = —h— n %)
) 1-(1 —qsin’(z—ﬁl-)) “n

(1=gsin? (53))

1<ksm-1

where
4d,d,
q=—- O<gzl
(dl +d,)

4. Evaluation of the operator T _and the estimation of the rate of convergence

In this section we will estimate the rate of convergence of the simple two-grid method
applied to the heterogeneous medium (38). In estimating the rate of convergence, the
critical step is to ﬁnd a closed form expression for T(pk whereT is the A-orthogonal
projector (16) and cp are the eigenvectors (42). The result of this product is given in
Proposition 2.

Proposition 2 ) , )
Let T be the A-orthogonal projector (16); (cpk, " %), 1<k<m—-1 and ™ be the

14




corresponding eigenvectors given in (42); bk, Il <k<m-1 be the coefficients defined
by (43). Then

k

k_b-l kK n-k
Te o (@ +9"79
-k bk+1 k. _n-k
T ™ = —— (p +9"™H 48)
2b
1<ksm-1
Te™ = @™

where we have used the prolongation and restriction operators defined by
(28),(40),(41):

[ 1 ]
p 1-8
1
B 1-8 (49)
Q- 1
p 1-8
i I
S 8 ]
1-g 1 B
Q" = 1-p 1 B (50)
L 1-g 1

and B is given in (41).

Proof of Proposition 2
Applying the operator (16) to the eigenvectors given in (42) yields

15



T = (I-Q45'Q%*A)¢* 1<ks<h-1
where

| l<k<m-1
Acp’;' - }\';'cp’;'

Furthermore, inserting (40) - (43) into (50) gives

1 10**°4) , = (-bkﬁ(l-ﬁ)i"%m"-l)apf--

| l<ism 1<ksm-1

- d - )
[Q*¢"],; = (1—5—(,—::5)@7'_1,,. -0 1sism

Combining (51) and (52) yiel_ds
Ak
{ Q* et =iy
- ~k
Q*Ap*Fm AP
0*AQ™ =0

1Ssksm-1

and

10%Y, = (bﬁ(l—ﬁ)kE+b+l)cpk ébqu,"

bt -
bk

k
i

C2))

(52)

16




-1 . * ~ k
Ag Q A@k"q? .
NI ‘ l<k<m-1
Ag Q A" =-p (53)
LI
A7'Q Agm =0

The prolongation of the eigenvectors for the auxiliary eigenvalue problem on the basis
of the prolongation operator (49) can be written as follows:

~ Kk .k .k .k 1 & | Gy
[Qq’]i,zn'ﬁq’i*(1‘5)‘91'4-1"Pi,u;"?q’i,in'b_kq’?,zn
l<i<sm (54)
[0%'], = f = ¢f = —qi~* 1Sism lsk<m-1
and finally, inserting (54) into (51) yields
k
( k b =1 &
[TCP]i,i+1-T<pi,i+l
J f 1<ism
Pk b"+1 7_s l<ksm-1 (55)
[Te" ]i,i-t-l-T(pZHl
k n-k .
[Te], = [Te""]. =0 1<ism

]

;'°kl and pf = "% in (55) results

Thus, using the equalities stating that cpf el ™ Piis
in (48), which completes the proof of the Proposition 2.

We now turn to the estimation of the rate of convergence, which is given in the Propo-
sition 3. '

Proposition 3

Let the error vector €' in the i-th iteration of the two-grid process with one post-
smoothing Jacobi iteration be represented as the linear combination of the eigenvectors
(42): ‘ ‘

m-1
e = Z (a’kcpk +d;_ "0 +d " (56)
k=l

17



and let’s introduce the following notation:

k k
- b -1 i b +1 -
S, = a +a4- ——_ l<ksm-1 57
k k 2bk n-k 2bk
Then
( l+l 2 km
-S 1— —
k( g sin 2m))
i+l i 2, KT '
- S,|1- —
La -k k( wq T sin 2m)
a:'! = d (1-0)
where
; ; km .
S;+1-S;(1—m(2—qsin2(ﬁ))) 1sk<sm-1 (59)

and o - is a weighting factor of the Jacobi method.
Proof of Proposition 3
Inserting (48) into (56) and using the notation (57), yield

A T
Te' = (a'-————-i-a'- )(q: +9" 8 4 ql cp
,; PV RRLELIPYY

-1 0

- ; Si((pk+cp"'k) +af;'cp’;'
=]

Applying a single Jacobi iteration (14) to the eigenvectors given in (42) results in the
following

a(l - a) h
o— .+
Inserting the eigenvalues defined in (42) into (61) and using (39), (41), (43) yields

Go* = (I-DA) ' = (1-0——"""2 " 1<k<i-1 61)

18




k

1 b . kT k
: G(pka (1 - g smz(—~))
b +1 2m |®

4 B ¢ l<ksm-1 62)
n-k _ _ . 3 KTU n—-k
G = (1= gL sin P )"

G = (1 - ) g™

Combining (60) and (62) yields (58), where the value of Sfc'” is found on the basis of
(57)

2
b5 +1 k
(_)T_sinz(z—j.t)) l<sksm-1 (63)
( bk) -1 m
Finally, inserting (43) and (44) into (63) results in (59), which completes the proof of
the Proposition 3.

Spt! - Si(l - g

We are now in a position to estimate the rate of convergence on the basis of eigenvalue
distribution and the main results given in (47), (56) - (59).

Note that the parameter g (see (41), (43)) can be viewed as a measure of material heter-
ogeneity. For example, the case of ¢ = 1 is equivalent to the problem in a homoge-
neous medium, in the sense that K, = K3 (1 - a) . Material heterogeneity increases
with decreasing the value of parameter g.

Table 1 illustrates the spectrum of eigenvalues for different values of q. It can be seen
that eigenvalues are clustered in two regions (except for the middle eigenvalue, which
is equal to (4K/h) (1/q)). The spectral width of the two regions (defined by the dif-
ference of the maximum and minimum eigenvalues in the corresponding region)
decreases with the decreasing value of q. This clustering of eigenvalues is one of the
key reasons for a faster rate of convergence of the two grid process with decreasing the
value of g.

We next investigate what is the weighting factor " that maximize the asymptotic rate
of convergence in the absence of the error component corresponding to the middle
eigenvalue, i.e., a. = 0. From (59) follows
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-0 (2-¢q) =-(1-20%

S 1/2<w*<2/3
4-q

(64)

Inserting (64) into (59) yields the followipg estimate of the asymptotic rate of conver-
gence governed by the ratio p = maxle;c*' Ly Sﬂ:

p (0) = max,|1 —m(2-qsin2(%))l

. (65)
* o 49 *
| p i—g O<p"<1/3
where ®" = 2/3 and p™ = 1/3 correspond to the solution of homogeneous problem.
It can be seen from (65) that the asymptotic rate of convergence of the two-grid method
increases (or p* decreases) with decreasing the value of q (or increasing material het-
erogeneity).

However, if the error component correspondin§ to the middle eigenvalue in (58) is
taken into account it is necessary to employ o' = 2/3 resulting in the asymptotic
rate of convergence governed by p*” = 1/3. So in the worse scenario we may expect
the same rate of convergence as for the homogeneous problem.

The oscillatory nature of the middle eigenvector, @™, is described by (42). It can be
seen that the eigenvector vanishes on the unit cell boundaries, but oscillates between
the unit cell midside nodes in geometric progression with a negative factor depending
on material heterogeneity, d,/d,. Such oscillatory response is unlikely to be triggered,
and thus in practice the rate of convergence is governed by the estimate given in (65).

3. Numerical examples

First, we will analyze the two-grid process for solving the boundary value problem
(1),(38) on the basis of uniform finite element grid with two elements on each unit cell
as described in section 3 with o = 0.5. For the purpose of simulating the singular
loading the right hand side function f(x) has been chosen as follows

sign(x-=1/2)

F&) = =77+

(66)
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where & = 1078 and

1 if  a>0
sign(a) = {-1 if a<0
0 if a=0

We carry out the smoothing iterations on the basis of the Gauss-Zeidel method. As a
termination criterion we use the following tolerance to bound the ratio of the residual
norm versus the norm of the right hand side vector, i.e.,

"""2 -8
. —= <10 6
\ 1Al 7
where ||v||, = Z]vd veE R".

t=m]

The results of the numerical experiment are presented in the Table' 2, where P09 and
P 1000 Characterize the asymptotic rates of convergence for the cases with 100 and 1000
unit cells, respectively. It can be seen that the theoretical rate of convergence (65)

t]

the rate of convergence of the multi-grid process with conventional intergrid transfer
operators is governed by the value of P, which is very close to unity
(p™ = 0.923 +0.992) , indicating very slow rate of convergence. Furthermore, the
rate of convergence of the conventional multi-grid process decreases as material heter-
ogeneity increases. This is in contrast to the proposed multi-grid process where the rate
of convergence improves with increase in material heterogeneity.

We next consider the same problem with 10 finite elements on each unit cell. The
results of this experiment are presented in Table 3. They show that the convergence

The next example deals with the nonuniform fine grid. We use 10 finite elements for
the two unit cells, where the solution has a high gradient. In the remaining region we
use one element per unit cell, with a homogenized effective coefficient. The ratio of
K,/K, = 1/100 is considered (Fig. 3). The results of this experiment are shown in
Table 4.
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The last numerical experiment deals with the three-grid method for the previously
defined problem. We use here the additional coarse grid for solving the auxiliary
homogenized problem and a standard multi-grid technique for formulating the coarse
grid problem. The results of this experiment are shown in Table 5, where v, and v, are
the number of pre- and post- smoothing iterations on the fine grid; v? and vg the corre-
sponding values on the auxiliary grid; N . the number of finite elements in the finest
grid; N, the number of unit cells; N, the number of the elements in the coarsest grid.
Results of this experiment are consistent with our previous observations, and confirm
our theoretical estimates given in (65).
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Table 1

1 2 3 4 -}

0.1 K 0.0479 0.1743 0.3328 0.4630 10.0000
n—-« 19.9521 19.8257 19.6672 195370

02 K 0.0480 0.1758 0.3387 0.4748 5.0000
n—-x 9.9520 9.8242 9.6613 9.5252

0.3 K 0.0481 0.1775 0.3451 0.4830 3.3333
n-k 6.6186 6.4892 6.3215 6.1787

04 K 0.0482 0.1792 0.3520 0.5028 2.5000
n—x 49518 4.8208 4.6480 44972

05 K 0.0483 0.1809 0.3596 0.5198 2.0000
n—-«k 3.9517 3.8191 3.6404 3.4802

0.6 K 0.0434 0.1828 0.3678 0.5396 1.6667
n—«x 3.2849 3.1506 2.9655 2.7937

0.7 K 0.0486 0.1847 0.3770 0.5633 1.4286
n-x 2.8086 2.6725 2.4%01 22938

0.8 K 0.0487 0.1867 0.3872 0.5928 1.2500
n-k 24513 23133 2.1128 1.9072

09 K 0.0488 0.1888 0.3988 0.6320 11111
n—-«k 2.1734 2.0334 1.8234 1.5902

1.0 K 0.0489 0.1910 04122 0.6910 1.0000
n-=Kk 1.9511 1.8090 1.5878 1.3090

Tabie 2

KKl g | P7 | pig | PR | Piooo | P50

1/100 0.0392118]  0.0099 0.0098 0.92278 0.00982 0.92253

1/1000 0003992 | 0000999 | 0000992 | 099192 | 0001001] 099191

27




Table 3

number | number of | number of
of unit | smoothing | two-grid
K,\/K, cells iterations cycles
1/100 0.03921 100 2 20
3 13
1000 2 20
3 13
1710 0.3306 100 2 26
3 20
1000 2 26
3 20
in 10 100 2 69
3 46
1000 2 69
3 46
Table 4
number | number of | number of
of unit | smoothing | two-grid
cells iterations | cycles
100 2 16
3 1
1000 2 16
3 11
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Tabie 5

type  of | number
KI/KZ Ne Nc NO Vi Va V?, Vg the cycle | of cycles

1/100 1.000 100 50 1 1 \'4 20
w 20

2 2 \'4 11

w 11

2 1 \4 12

w 11

1 2 v 20

w 20

17100 10,000 1,000 500 1 1 v 20
w 18

2 2 v 10

w 10

2 1 v 10

w 10

1 2 v 18

w 18

1/10 10.000 1,000 500 1 1 v 27
w 27

2 2 v 14

w 14

2 1 v 14

w 14

1 2 v 27

w 27
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A multi-grid method for a periodic heterogeneous medium in multidimensions is developed. Based on the homogenization
theory, special intergrid transfer operators have been developed to simulate a low frequency response of the boundary value
problem with oscillatory coefficients. An adaptive strategy is developed to form a nearly optimal two-scale computational model
consisting of the finite element mesh entirely constructed on the microscale in the regions identified by the idealization error
indicators, while elsewhere, the modeling level is only sufficient to capture the response of homogenized medium. Numerical
experiments show the usefulness of the proposed adaptive multi-level procedure for predicting a detailed response of composite

specimens.

1. Introduction

The computational complexity of modeling large scale composite structures is enormous primarily
due to the multiple scales involved. For example, the typical size of the structure (an airplane or a car)
is of the order of magnitude of tens of meters, while the diameter of the fastener hole is of the order of
millimeters. Prediction of micro-mechanical failure modes necessitates considerations at even smaller
scales. The useful life of a structure depends on the quality of modeling at each scale and the ability of a
reliable transfer of the appropriate information between various modeling levels. Thus, the need for
reliable analysis techniques at several different scales is crucial.

Mathematical homogenization theory [1-3] or its engineering counterpart [4] have been traditionally
used as a primary tool for analyzing heterogeneous medium. Based on the assumptions of micro-
structure periodicity and uniformity of macroscopic fields within a unit cell domain, homogenization
theory decomposes the boundary value problem in a heterogeneous medium into the unit cell (micro)
problem and the global (macro) problem. The computational sequence consists of three steps: (i)
solution of the unit cell problem and evaluation of the homogenized material properties, (ii) solution of
the macro-problem and (iii) post-processing on the micro-level. Reliability of computations in a
heterogeneous medium is strongly linked to the validity of the two basic assumptions (periodicity and
uniformity), introduced by the classical homogenization theory. The issue of statistical periodicity has !
been investigated in [5] and is not addressed here. Instead, we concentrate on the issue of uniformity of '
macroscopic fields (or absence of it) within the unit cell domain. These studies are motivated by the
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well-known fact that in the high gradient regions the macroscopic fields are rapidly varying and their
uniformity within the unit cell domain is highly questionable.

This paper proposes an alternative to the classical homogenization that abandons the classical
hypothesis of uniformity of the macroscopic fields within the unit cell domain. By this approach,
solution obtained from the mathematical homogenization theory is only used to simulate the global
response of the discrete heterogeneous medium. The proposed computational scheme can be viewed as
a generalization of the multi-grid method for the periodic heterogeneous medium. Within this
framework the mathematical homogenization theory serves as a mechanism for capturing the lower
frequency response of the discrete heterogeneous medium, while the classical relaxation techniques are
employed to capture the oscillatory response.

Previous studies [6] have indicated that for problems in heterogeneous medium eigenvalues
corresponding to the lower frequencies are not smooth and thus the classical bi- or tri-linear operators
are not suitable for data transfer between the grids. For 1-D problems it has been found [6] that the rate
of convergence is governed by the factor q/(4 — g), where 0<g =<1 depends on the microstructure.
This estimate reveals that the rate of convergence increases with the increase in material heterogeneity.

The paper focuses on the issues of adaptive multiscale modeling and fast iterative solution algorithms
for problems in heterogeneous media. We will attempt to construct a nearly optimal two-scale
computational model consisting of the finite element mesh entirely constructed on the microscale in the
regions where there is a necessity to do so, while elsewhere, the modeling level will be only sufficient to
capture the response of homogenized medium. The microscale reduction error indicators described in
Section 5, are used to assess the quality of homogenized model, and to identify the regions where the
homogenized model should be replaced by a model reflecting the details of the microstructure.

Once the two-scale model is constructed, the multigrid-like solvers in the form of MLAT [7] and/or
FAC [8, 9] are employed due to their linear asymptotic rate of convergence, as opposed to the roughly
quadratic growth in CPU time versus the problem size in the case of the direct coupled global-local
solutions (or, to be more precise, NB?, where N and B are the problem size and the bandwidth,
respectively). We show that it is possible to obtain even faster convergence for the case of differential
equations with highly oscillatory periodic coefficients if special intergrid transfer operators developed in
Section 3 are utilized.

The outline of this paper is as follows. Problem statement and objectives are formulated in Section 2.
Special purpose intergrid transfer operators for a periodic heterogeneous medium are derived in Section
3. Section 4 describes an adaptive two-scale computational procedure for periodic heterogeneous
medium. Microscale reduction error indicators and estimators aimed at quantifying the quality of
homogenization and stearing the adaptive process are given in Section 5. Numerical experiments
conclude the manuscript.

2. Problem statement
In modeling heterogeneous media one can adopt two different points of view:
2.1. Mathematical modeling on the microscale

In this scenario each phase (fiber and matrix) is assumed to possess homogeneous properties and
obey equilibrium and kinematical equations as well as compatibility and traction continuity conditions
between the phases. The corresponding strong form of the boundary value problem for a linear
elastostatics is given by

g,,;=b; on {2
0; = Dy, on ()
& =Uu;  onf

u, =u, on I,

I3
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an, =t on I,

(o) =0 [w]. =0 | (1)

ARV ESRTY int

where o, and ¢; are the components of the stress and strain tensors, respectively; b; and t, represent the
body forces and prescribed boundary tractions on the boundary I, respectively; u; are the components
of the displacement vector; i, are the prescribed displacements on the boundary 1““, D, represent the
components of the symmetric positive definite fourth-order constitutive tensor; {2 is a problem domain.
The last two equations correspond to traction and displacement continuity conditions on the interface,
I, between the microconstituents. [. ..}, ~denotes the jump operator on [}.,. Symmetric gradient is

denoted by ¢, , = (o, T ¢, )/2. Standard tensorial notation with summation over the repeated indexes
is employed.

2.2. Mathematical modeling on the macroscale

Following the classical homogenization theory [1-3], the asymptotic solution of the boundary value
problem (1) for the periodic heterogeneous medlum can be obtained using two-term double scale

asymptotic expansion

u(x, v) = ul(x) + eu, (x, y) (2)
where .

Ui Y) = hi(D)E®) el = Ui (3)

and x is a macroscopic co-ordinate vector, y = x/¢ is a microscopic position vector. The parameter ¢ is

a representative unit cell size, which is very small in comparison with the dimensions of the problem

domain. The periodicity of the microstructure implies that F(x, y + kY') = F(x, y), where vector Y is a

basic period of the microscopic co-ordinate system; k is a non-zero integer.

~In the representation (3), k,,(y) is the Y-periodic function, which can be found from the solution of
the boundary value problem on the unit cell domain 6 subjected to periodic boundary conditions

(Dijkl(h(k,l)mn + 8km61n))j = 0 on 0 (4)

where §; is a Kronecker delta.
The corresponding expansion of the strain tensor is given

(51k5 + h(, j)kl)gzl +O(¢) (5)

The macroscopic displacement field u; %(x) is the solution of the followmg boundary value problem with
homogenized coefficients

(D~ijk1u(()k.l))j =f, on{f}
u =1, on I (6)

{

5 .0
Dgeyn; =t onl;

t

where

mnpq J’ (611'"6}" + h(l j)ymn )Dijkl(akpalq + h(k.l)pq) dB | . (7)

and 6, is the volume of the unit cell.

Each of the two mathematical models is discretized using a finite element method. The corresponding
discrete models are termed as micro and macro finite element meshes, each may have various levels of
mesh refinement.

It is the primary goal of the paper to find a numerical solution of the micro finite element model. A
direct solution of the system of equations resulting from such a discretization is usually computationally

e A < A Y T

a e - -
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not feasible since it may involve over a million of unknowns. On the other hand, the finite element
solution of the macro-model (6)—(7) is generally feasible and can be utilized to capture the lower
frequency response of the discrete heterogeneous system, while various smoothing procedures would be
very efficient in capturing the oscillatory response of a heterogeneous medium. This suggests that a
multi-grid like approach is a natural choice for solving discrete systems constructed on the microscale.

3. The intergrid transfer operators for a periodic heterogeneous medium in multidimensions

In this section we focus on the central issue of constructing the intergrid transfer operators for a
periodic heterogeneous medium in multidimensions. The structure of the intergrid transfer operators
between the discrete heterogeneous and corresponding homogenized media is defined on the basis of
the discrete form of the double scale asymptotic expansion

u; = (N, (x) + Ehijk(y)N(j,k)a(x))da (8)
where N,,(x) and N, ,,,(x) are the displacement and strain interpolants in the macro-mesh, denoted by
u’=N_d, and &)= Ny iyod, . 9)

and d, are the corresponding nodal displacements. Hereinafter, capital subscripts 4, B, C,. .. are
reserved for the fine grid (micro mesh) degrees-of-freedom, while lowercase subscripts a, b, c, ...
denote auxiliary coarse grid (macro mesh) degrees-of-freedom.

Since the product eh,;, in Eq. (4) is independent of the choice of &, it is more convenient to analyze
the unit cell problem in the co-ordinates of the physical domain; i.e. eh; (y) = hyj (x) = O(e). Thus,
substituting the discrete form of the unit cell solution, hix = N;p(x)d; 5, into Eq. (8) yields

u;=(N, + NiBN(,',k)adjkB)da (10)

With this introduction the problem of the coarse grid correction is now stated in the following
proposition.

PROPOSITION. Let the coarse grid correction problem be formulated on the basis of the interpolation
defined in Eq. (10) and let

Aubdb =ru (11)

be the coarse grid correction problem, where A, is the stiffness matrix of the boundary value problem
(6) with homogenized material properties (7) in the auxiliary macro-mesh, and r, is the respective
restriction of the micro-mesh residual vector.

Then, in the limit as € — 0 the stiffness matrix A, coincides with the restriction of the stiffness matrix
of the boundary value problem on the micro-mesh (1).

PROOF. Let Q,, be a standard (for the second-order differential equations) bi-linear or tri-linear
coarse-to-fine grid prolongation operator. The nodal degrees of freedom in the two meshes are then
related by

dA = QAuda (12)

The hypothesis of e — 0 is equivalent to the infinitesimally small mesh size in the micro-mesh, and thus,
without loss of generality, the shape functions on the auxiliary grid can be represented as a linear
combination of the shape functions on the micro-mesh, i.e.

N, (x) = Na()Q 4, ) (13)

where the coefficients of linear expansion Q ,, follow from the relation N,d,=N_,d,=N_,Q,.d,.
Inserting (13) into (10) yields

u,(x) = Nia(Qa.+ N(/'.k)adjkA ), (14)
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To construct the homogenization-based prolongation operator Q ,, we evaluate u; at the micro mesh
nodes xg

ui(xg) =dy = NiA(xg)(QAa + N(/,k)a(xg)djkA)da (15)

where underlined subscripts indicate no summation over the repeated indices. Note that the displace-
ment along the spatial co-ordinate i at the node x, corresponds to the degree-ot-treedom 8 in the micro
grid, i.e. u,(x,)=d, and N,,(x;)=6,,. Thus

dB = Q~[J’udu (16)
where the homogenization-based prolongation operator is defined as follows
Q~Bu = Qo T NG a8 )y ' (17)

It remains to show that 0 ,, restricts the stiffness matrix of the micro-mesh, A, to the coarse grid in
such a way that the resulting stiffness matrix A, = QMAABQB,, coincides with the stiffness matrix of
the macro problem (6) with homogenized material properties (7) in the limit as ¢ —0.

For this purpose we evaluate the strain field by taking the symmetric gradient of the displacement
field given in (8)

& = (N(i.j)a(x) + l'l(i.j)kl(x)N(k.l)n(x))da + O(e) (18)
In the limit as e — 0 the last term can be neglected resulting in the following strain approximation
(5,/(5 + h(z j)kl)N(k.l)udu .
N iya(Qaa + Nieyadiaa)d, (19)

Note that an identical strain approximation can be obtained by direct discretization of the two-term
asymptotic strain expansion given in (5).
The macro-mesh stiffness matrix is given by

f (1 a ukl (k )b d'Q

= 2 (m n)aN(p.q)b de J (Stmajn + h(: i)mn)Dijkl(akpﬁlq + h(k.l)pq) dé (20)

cells

Further, exploiting the hypothesis of the infinitesimality of the unit cell, as e— 0, we note that

(xg) = N! . =const VxQEO' _ (21)

(' ia (i.f)a

where the superscript  denotes the unit cell number.
Finally, inserting (21) into (20) yields

Ay = fn éAaN(i.i)ADijklN(k.l)BQab d2 = Q~:AAABQ~Bb (22)
which completes the proof of the proposition.

So far the homogenization-based intergrid transfer operators (0, 0%) have been derived assuming
that e—0. In practice, the value of ¢ is finite, requiring reformulation of the intergrid transfer
operators to maintain C° continuity of the prolongated displacement field in the micro mesh. It should
be noted that a direct application of the prolongation operator (17) does not uniquely determine the
displacement field on the boundaries of the unit cells, since the macroscopic strain field N, ,.(x5)d, 1s
a C~' continuous function, i.e. it is discontinuous on the boundaries of the macro-clements.
Consequently, the prolongated solution is also discontinuous at the interface between the unit cells,
overlapping different macro-elements.

A
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To develop a homogenization-based prolongation operator O, that generates C' continuous
displacements, it is necessary to construct a C” continuous strain field in a macro-mesh g;, defined as

eq = Nyeu(x,) (23)

where ¢,(x,) are nodal strain values in the macro-mesh and N, are the corresponding strain field shape
functions. Nodal strain values are typically found by weakly enforcing the equality between the
discontinuous finite element strains and their continuous counterpart [10]. By this technique the
projection operator C,, is formed to project strain values from a set of sampling points to finite element
nodes in the macro-mesh

&g lx,) = Cagsk[(xg) = CagN(k,[)b(xg)db _ (24)

where the sampling points, X, can be either Gauss points, reduced Gauss points or finite element nodes
[10].

Substituting (23) and (24) into (17) and evaluating the displacement field at the finite element nodes
in the micro-mesh yields the following expression for the continuous homogenization-based prolonga-
tion operator

Q~Aa =Q45(6 + Cng(k,I)a(xg)dklé) : : (25) -

In the numerical examples considered in this paper, projection operator C,, was constructed on the
patch-by-patch basis as described in [10]. In the case of a 4-node rectangular element it amounts to
computing the nodal strain values by averaging the corresponding strain values evaluated at the element
centroids, connected to the node.

REMARK. In practice, one has to deal with several different types of unit cells such as in the case of
laminated composites where each layer is composed of different unit cells. Even though the macro
strain field has been projected to be C continuous, the prolongated displacement field might still be
incompatible at the interface between dissimilar unit cells. This requires further modification of the
continuous homogenization-based prolongation operator at the interface between the unit cells of
different types.

This is accomplished by introducing a transition layer of unit cells at the interface between dissimilar
unit cells. The formulation of the unit cell problem in the transition region differs from the interior unit
cell in the way the boundary conditions are prescribed.

To clarify this point we consider a transition layer, B*, in a laminated composite at the interface
between two dissimilar layers A and B as shown in Fig. 1. The microstructure in the transition region,
B*, is identical to that in the layer B. The boundary conditions applied to the unit cell in the transition
region are of the following categories: '

(1) On the faces (edges in 2-D) orthogonal to the interface, the boundary conditions are periodic,

i.e. displacements d,;, are equal on the opposite sides of the unit cell.

(ii) On the faces parallel to the interface, the non-homogeneous Dirichlet boundary conditions are
assumed instead. The prescribed displacement values are assumed to be equal to those in the
neighboring layer. In general, the value of these displacements is not equal to those on the
opposite sides of the unit cell.

The unit cell boundary value problems are solved in the following sequence (3-D case). First solve for
the interior unit cells (with all periodic boundary conditions). This is followed by the unit cells at the
interface between two dissimilar layers (with partially periodic and Dirichlet boundary conditions).
Then, the unit cells along the edge connecting four different layers (with partially periodic and Dirichlet
boundary conditions), and finally the unit cells connected to eight different unit cells (with Dirichlet
boundary conditions only). ' '

4. Multiscale solution algorithm for heterogeneous media

In this section we present the formulation of multiscale solution algorithm for problems in a periodic
heterogeneous medium where one or more regions are modeled on the microscale, while elsewhere, the
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Fig. I. A transition layer at the interface between two dissimilar layers of unit cells.

medium is treated as homogenized. Our formulation is applicable to general three-dimensional domains
with unlimited number of local regions, although for simplicity, illustrations are limited to two-
dimensional problems with a single local region. Attention is restricted to a two-level scheme.

4.1. Problem definition and notation

Consider a heterogeneous medium on (2 which is formed by a special periodicity of a unit cell.
Suppose that the Microscale Reduction Error (MRE) indicator to be described in Section S, indicates
that the classical homogenization procedure is not valid on the portion of the problem domain, denoted
by 2 C Q. Therefore, the optimal computational model consists of the finite element grid G on
Q2 =2/0, where the elements are assumed to possess homogenized material properties, and a finite
element grid G, with much smaller elements constructed on the microscale.

The micro-grid G, is partitioned as follows

G=G,UG : 26)
L

where G, are the micro-grid nodes at the interface I} between the two regions, and G, are the interior
micro-grid nodes as shown in Fig. 2.
Likewise the macro-grid G is partitioned in a similar fashion

6=6,U6, ~ (27)
where G, are the macro-grid nodes at the interface I;, which do not have to coincide with the nodes in
G,, and G are the remaining macro-grid points.

We further define an auxiliary grid G on {2, where the entire finite element mesh is modeled with

homogenized material properties. The grid G is aimed at capturing the lower frequency response of the
two-scale grid model G U G. The auxiliary grid is partitioned as follows

G=G6,UG, UG, | (28)
where G, =G,, G~G = G,; the grid G,_ represents auxiliary grid points on {2 as shown in Fig. 2.

For information transfer between_the micro- and macro-grids, we employ continuous homogeniza-

tion-based prolongation operator Q derived in Section 3, which is partitioned into two blocks for

-

R

[PV
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G,

Fig. 2. Partitioning of the auxiliary and micro grids.

convenience. The first denoted by (, relates nodal displacements in the macro grid G to those in the
micro grid G at the interface I only

0:6-G, (29)
where

0=(0, i) (30)
such that

Q~,,:é,—->G, and Q~,G:G~G—>G, (31)

Note, that as opposed to the standard linear prolongation operator, which relates the information at the
interface only, continuous homogenization-based operator Q,G is a function of VyN(x,) on 2 resulting
in the information flow from the interior to the boundary and vice versa.

Likewise, we define the second block of the continuous homogenization-based prolongation operator
denoted by Q which relates the information between the auxiliary coarse grid and the interior micro
grid nodes

0:6-G, (32)
which is partitioned as

0=(0, 0. (33)
such that

Q~L,:C§,—>GL and QLL: G~L~—>G,_ (34)

Consequently, the continuous homogenization-based prolongation operator O can be structured as
follows
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. [0, 0 Ow

o= [9“ . Q'°] (35)
QLI QLL 0

The continuous homogenization-based restriction operators Q* G—G and Q": G,— G are conju-

~

gated to Q and 0. and are schematically denoted as

Q~7/ Q~i, \ Q~*
o*=| 0o Qf, | and Q*:{~;’] (36)
~ Ql(?
1G O

For subsequent derivations we will introduce the following notation:

a=[d,;a,;ug]” auxiliary grid displacement vector, where u, € G, i, €G,.i,€G,.
i=[u,;usl* macro-grid displacement vector on G.
u=[u;ul* micro-grid displacement vector. such that u, €G, and u, €G,:
Ay Ayp A

A=A, A, O auxiliary grid stiffness matrix on G,

| Ag; 0 Age
2 Au G A . A : - : T
A=1{ . macro-grid stiffness matrix on G, such that A;; =A; and A,; = A g3

A= Ay 173 . I . .
=4 A micro-grid stiffness matrix on G;
L2 LI LL
f = [f,; f,_; fG]* auxiliary grid force vector, where f~,, fL, fG are nodal forces acting on grids
L G,, G., Gg, respectively. _
f=Unfsl A macro-grid force vector acting on G, such that f; = f5;
=il micro-grid force vector, where f, and f, are nodal forces acting on grids G,

and G,, respectively.

We note that the displacement vectors & and 4 are related via orthogonal assembly operator L given by

_f1 0 0O
t=[3 ¢ 7] 37
where I is an identity matrix of an appropriate size, such that
u=~Lu (38)

We are now in a position to formulate an algebraic system of equations for the two-scale linear elasticity
problem in heterogeneous media. It consists of finding a pair of nodal displacement vectors (&, u) such
that

1/2((Ad, i) + (Au, w)) = (f, @) = (f, u) :>?u;iur; | (39)

subjected to the compatibility condition at the interface

u, = O | | (40)
Minimization of (39) with respect to (i, u) subjected to the interface condition (40) yields a system of
linear equations:

{(A+Q*AHQ') Q‘*A,L][a} [f+Q*ﬂ] |
\ _ (a1)
ALQ A u, f '

o e emne s 1P
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The system of lincar equations (41) can be solved either directly or iteratively. The direct solver is not
well suited for an adaptive computational environment, where the region requiring a more detailed
interrogation. is not known a priori.

It is our objective to develop an iterative solution procedure, which exploits the solution of the
auxiliary problem on G in order: (i) to identify the regions where the homogenized finite element
model is inadequate, and (ii) to predict the lower frequency response of the two-scale model.

Section 5 deals with the first item, while in Section 4.2 we focus on developing a two-scale iterative
solution scheme. :

4.2. Iterative two-scale solution procedures

The three-step iterative solution procedure based on minimization of energy functional (39) on
various subspaces is given below:

Step 1
Find the correction ' which minimizes the two-scale energy functional (39) on the subspace of the
auxiliary grid functions, i.e.

/2((A(a"+ L"), a' + Le'y + (A@' + 00, u' + O57)) — (f, &' + L&’ —(f,ui+Q~17i)$>rr1.iin (42)

where the superscripts refer to the iteration count.
Note that the auxiliary grid correction ¢ has a similar partitioning to i, i.e.

v=[0,;0,;05]* and ©§=[0,;0,]*
A direct minimization of (42) with respect to ¢’ yields:
(L*AL+Q*AQ)i" = L*(f- Aa') + 0*(f - Au') (43)

The first term on the left-hand side represents the assembled form of the macro-grid stiffness matrix. In
Section 3 we have shown that for an infinitesimally small unit cell the second term represents an
assembled form of the stiffness matrix on the auxiliary grid GL, 1e.

Iin?](L*ALwLQ*,—'\Q):A (44)

In practice, however. the value of the representative unit cell size ¢ is finite, and thus (44) is satxsﬁed
only approximately. Nevertheless, for the purpose of approximating the auxiliary grid correction 0* we
will replace the Jacobian matrix in (43) by A. In the adaptive environment this approximation will
significantly reduce computational cost, since only a single factorization of the auxiliary stiffness matrix
is required, independent of the refinement process.

Step 2
Once the auxiliary grid correction has been carried out it is necessary to update the solution in the
auxiliary grid
~i+ 1 ~ ~ A+ 1

u'’t =0+ wh 0T =0+ wld! =u'+ wOi’ (45)

The relaxation parameter is introduced to account for the approximation introduced in (44) as a result
of a finite size of the unit cell. The relaxation parameter is found from a [-D minimization ot the energy
functional along the dircction § evaluated in the previous step (43)

V/2((AG + wld'). i + oLi') + (A’ + 005", u' + w(05)) = (f. 4" + wLd")
- (f, u' +wQ6'):>mmin (46)

which yields
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_(L(f-Ad)+ QY (f- Au). ) )
T ((L*AL+0*AQ)5" 5"

Step 3 ,
Find the correction v, on the micro-grid, which minimizes the energy functional on the subspace of

the functions on the micro-grid G,, i.e. keeping @' fixed
1/2((Ad’, 0"y + (A’ +v'),u’ +0v")) — (f, 0"y - (f, u' +v')=>min (48)

where v, =0 on I; to maintain compatibility.
The direct minimization of (48) yields

Ao =1 - A/./lei - ALLu"L (49)
If (49) is directly solved and
u =l ol (50)

then the three-steps iterative process described is in the spirit of FAC algorithm [8, 9], subsequently to
be referred as FAC-Comp. :

It is important to note that since the unit cell is very small, the number of degrees-of-frecedom in
micro-grid could be larger than in the macro-grid. Secondly. the solution behavior in the micro-grid is
highly oscillatory with a lower frequency response similar to that in the auxiliary mesh. These two
observations suggest to replace the direct solution of (49) by smoothing of the form given by

- . ‘ A . )
up =up+T P (f - ALQE - ALu) (51)
where P, is a preconditioner on the micro-grid G, and 7' is a relaxation parameter given by

. -A,, 00 -A,, u v
'TI= (fL LIQ ,- ,-LL L L) (52)
(AL vg,v)

Wher? vy =P (fo— A, Q4 A, ul)
This variant has similar characteristics to the linear version of MLAT [7], and will be termed as
MLAT-Comp.

5. The microscale reduction error estimators and indicators
S5.1. Formulation

In this section we quantify idealization errors associated with homogenization of periodic heteroge-
neous medium and present their use in the adaptive procedure. The proposed Microscale Reduction
Error (MRE) estimator is based on assessing the uniform validity of the double scale asymptotic
expansion [1-3], which is given by a rapidly decreasing asymptotic sequence

u; = () + eHy (9)ug; () + 8Py (9)) lx) + O(E”) (53)

Following [1-3], the Y-periodic function P,,, is found from the higher-order equilibrium equation

1

.9 -
m (Dipkl(P(k.l)mnj + Hkmnal/')) + DijkI(H(k.l)mn + S mSin) — Dijmn =0
on unit cell 6, (>4)

Problem (54) is solved using finite element method. The resulting asymptotic expansion of the stress
field is given by

BRI,
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‘o 0 0 1 0 2 -
o"l - A"/k/(y)u(l\./)(x) + EAl/k/q(y)uk./q(x) + O(E ) (53)

where

A?,mn()’) = Dijkl(H(k./)mn + 84 mOrn)

1 (s6)
Aijmnp(y) = DijkI(P(k.I)mnp + Hkmnalp) r?‘
In the classical homogenization theory only the first term in (55) is considered, while the second term is (
neglected. Thus, the quality of the homogenization is assessed on the basis of the relative magnitude of @
the first term neglected to those taken into account. The resulting Microscale Reduction Error ; @
estimator is defined as [ Itc
i err(
lleA'VZu’l], 4 57) | the
/ATy e ra— i or
1A% |
i
where {|-]|; o is @ L,-norm defined as E .
6. ]
1 2 1/2 E
1A, y)llo.n=7;<§ L fyh,-,-(x, y)deQ) (58) :
t squ
To steer process of adaptivity we define the MRE indicator, which reflects the relative contribution of f pro
individual element in the auxiliary mesh to the total microscale reduction error 't‘ G
: ele
. . “8A11<I “2.1 “o.n' . A2 { 1
=BT B =1 59§ mi
”Aklu(k,l)”O,ﬂ Y.
é n
This approach is equivalent to the one employed for discretization error indicator in [11]. i Th
 vic
¢ mal
3.2. Explicit form of n and n° in 1D L
. , twq
In this subsection, we derive a closed form MRE indicators and estimators for a 1D model problem in the
order to study various factors affecting the microscale reduction errors. on
Closed form solution of (4), (54) for H and P vields to
. 1 h -1
A'=D = (Z D"dy) = const, (60)
]
and
D~ h
A‘=7f H dy = const, (61)
0

where D are the effective material propertics and & is the unit cell size. Inserting (60) and (61) into (57)
yields the one-dimensional counterpart of the microscale reduction error estimator given by

d%u’
4 D > dx? llo.o ' "
”"fn (D(y) YA “du" - (62)
dx 0.4 '

For the unit_cell consisting of two phases with compliances C, = 1/D, and C,=1/D, (the overall
compliance C=C, + C,, C=1/D), a the volume fraction, the resulting MRE estimators is given by

.
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‘dzu()
N ]Cl—Czi a(l=a) | de® oo (63)
n= ~ 2 0
C du
dv o0

From the above expression we can identify four factors affecting the microscale reduction error:

(1) The size of the unit cell, A. 3

(2) The normalized difference of compliances, IC, - G,|/C.

(3) The fiber volume ratio, a(l— a)/2.

(4) The macro strain gradients, |d*u’/dx?| o
It can be seen that the error estimator is asymptotically exact in the sense that the microscale reduction
errors vanish if either the normalized strain gradients are negligible, the unit cell is infinitesimally small.
the compliances of the microconstituents are almost identical or the volume ratio is close to cither zero
or one, which corresponds to a homogeneous material.

6. Numerical results

Our numerical experimentation agenda includes two test problems. The first example deals with a
square plate containing a centered crack. Geometry, boundary and symmetry conditions, material
properties, loading and unit cell description are shown in Fig. 3. The finest level macro-mechanical grid
G with homogenized material properties consists of 64 elements along each co-ordinate where each
element coincides with the unique unit cell boundaries.

The distribution of homogenization errors as indicated by MRE indicator is shown in Fig. 4(a). The
micro-grid, G, is placed on the portion of the problem domain, which encompasses the contour of
n°>1 as shown in Fig. 4(a). For simplicity the grid G on {2 is selected to be of a rectangular shape.
Thus, the two-scale model consists of a micro-grid in the region encompassed by 12 X 20 unit cells in the
v&r&ty of the crack tip, while elsewhere 02/, the finite element mesh is constructed on the
macro-scale.
<The multi-grid process was carried out on three different meshes: two-scale (macro-micro) grid and
t_}’@_{gﬁ@mﬂiary macro-grids. We used V-cycle with 1 pre- and 1 post-smoothing Gauss-Seidel iterations on
the two auxiliary levels and 2 pre- and 2 post-smoothing Jacobi iterations on the finest level. As usual,

- on the coarsest level we used a direct solver. As a termination criterion we used the following tolerance

to bound the ratio of the two-scale grid residual norm versus the norm of the right-hand side vector, i.e.

crack tip
////////////6////////////
@)
.
E=10 7)
e
p=10
- E=10 v,
-] 7,
- A
L .
v=03
ity
i
y
homaogenization  theory micromechanical  model

Fig. 3. Plate with the centered crack: geometry. boundary conditions, material properties and loading.
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To ‘obtain convergence with tolerance of eps=10"" it was necessary to carry out 14 cycles using
MLAT-Comp algorithm and 7 cycles with FAC-Comp method.

The resulting energy distribution absorbed in a unit cell in the micro-grid is shown in Fig. 4(c). For
comparison purpose also shown are the results obtained on the basis of the postprocessing from the
classical homogenization theory [12] and the reference solution where the entire problem domain {2 is
modeled on the microscale. It can be seen that the postprocessing procedure from the classical
homogenization theory significantly underestimates the energy absorbed in the close vicinity to the
crack tip. On the other hand in the radius of 2-3 unit cells away from the crack tip, the classical
homogenization theory is adequate.

In the second example. we consider a laminated plate [90,/0,,/90,], subjected to uniform axial
tension. Geometry, boundary and symmetry conditions and the micro-structure cross section for the
different layers are shown in Fig. 5. We considered Glass—~Epoxy composite material with the following
material properties: £, =72.3, y, =0.22 and E, = 2.92, v, = 0.35. The uniform tension load was applied
normal to the xy plane. The finest level of macro-grid G consists of 24 elements along the co-ordinate x
(thickness direction). and 192 along y, each element coinciding with the unique unit cell.

The distribution of the homogenization errors and the region selected for micro-mechanical modeling
are shown in Fig. 6(a). The micro-grid consists of 14 400 elements placed in the region encompassed by
24 X 24 unit cells in the vicinity of the free edge. The two-grid model contains approximately 38 000
degrees-of-freedom. The multi-grid process was carried out on three different meshes: two-scale
(macro-micro) grid and two auxiliary macro-grids. We used V-cycle with 1 pre- and 1 post-smoothing
Gauss-Seidel iterations on the auxiliary levels; 3 pre- and 3 post-smoothing Jacobi iterations on the
finest level and a direct solver on the coarsest level. 1% error of residual (64) was obtained in 8 cycles
, of MLAT-Comp algorithm and 8 cycles of FAC-Comp method.

Fig. 6(b,c,d) compare the shear stress distribution in the micro-grid as obtained using two-scale
-model, homogenization theory and the reference solution. Results are consistent with our previous
> observations, i.e. inadequacy of the postprocessing technique from the classical homogenization theory
. in the ‘hot spots’ as opposed to striking accuracy of the two-scale model.

To study boundary layer effect between two dissimilar layers in the axial tension problem we consider
:_a Thicro-grid of approximately 15000 degrees-of-freedom on the entire problem domain. The same
: solution strategy has been employed. It was necessary to perform 5 multi-grid cycles to achieve
- convergence with tolerance 0.1%. Figs. 7 and 8 compare the distribution of peeling stress o, and shear

|

‘ Irll /11£ll <eps where o], =§1 | veRr” "
i

)

micromechanical model homogenization thearv

Fig. 5. Plate subjected to the axial tension: geometry. boundary conditions and microstructure.
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Fig. 8. Plate subjected to the axial tension: the resulting shear stresses
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stress o, as obtained using the postprocessing from the classical homogenization theory and the finite
element solutlon of the discrete heterogeneous media. It can be seen that except for the close vicinity to
the free edge the values of o, as obtained with the two methods are in good agreement. On the other
hand, the distribution of shear stress o, differs not only in the vicinity of the free edge, but along the
entire interface between the two d1551m|lar layers. The finite element of the discrete hetcrogeneous
model shows oscillatory shear stresses developed along the entire interface, while the solution of
homogenized problem shows no such stress concentration. The magnitude of these shear stresses is
roughly 1/3 of the shear stresses developed at the interface, but even so, these interface shear stresses
may significantly affect the propagation of delamination cracks emanating from the free edge.

The primary reason why the postprocessing technique fails to detect these interface shear stresses is
because it permits displacement incompatibility within a unit cell at the interface between dissimifar
layers. On the other hand, a finite element solution of the discrete heterogeneous model enforces such
compatibility exactly, giving risc to oscillatory shear stresses at the interface.

In the last numerical example we study the effectiveness of MLAT-Comp algorithm for solving very
large two-scale models. The problem domain, boundary conditions, loading, and the unit cell model are
the same as in the first example. The two-scale model contained a micromechanical finite element mesh
in the region of 176 X 176 unit cells in the vicinity of the crack tip, while elsewhere, the finite elements
were treated as homogenized. The macro-mechanical finite element mesh consists of 352 elements along
each co-ordinate. Each macro-mechanical finite element coincides with the unique unit cell. Hence, this
problem contains 435 074 independent degrees-of-freedom.

The multi-grid processes was carried out on 4 different meshes: two-scale (macro-micro) mesh and
three auxiliary macro-mechanical meshes. We used V-cycle with 1 pre- and 1 post-smoothing Guass—
Seidel iterations on the two auxiliary levels and 2 pre- and 2 post-smoothing Jacobi iterations on the
finest level. As usual, on the coarsest level we used a direct solver. It was necessary to perform 15
multi-grid cycles to provide the convergence with eps =0.01 in accordance with criteria (64). Only
MLAT-Comp algorithm was tested, since the micro-grid contained over 100 000 nodes, and the direct

_solution on the micro-grid is not practical. This computational process takes about 8.2 hours on the
SPARC station LX, which is 17.2 times faster than the use of a skyline direct solver and the storage
savmgs are 51gmﬁcant

A oac

‘éppendix
Two dimensional idealization of [90,/0,], laminated plate

Consider a [90 /0 ] laminated plate as shown in Fig. 9. The uniform axial tension is applied along

“the co-ordinate Z In order to reduce the problem dimension to 2-D we assume that the shear stresses

0., 0,, and the shear strains ¢,,, £,, are negligible and it is necessary to idealize the microstructure in
‘90° layer as a stack of orthotropic layers parallel to the interface.

For the purpose of calculating the equivalent mechanical properties of this layer, we consider the
auxiliary problem given in Fig. 10. The elasticity moduli, the Poisson’s ratios and the volume fractions
are denoted by (E;, » and k,), (i =1, 2), respectively.

The homogenized elasticity moduli are found on the basis of the rule of mixtures

Ex:Ey=k1E1+k2E2 Ez=(k1E;l+k2E2—1)-l (65)

The Poisson’s ratio in the plane XY is evaluated on the basis of the equilibrium condition along the
co-ordinate Y under the uniform tension in X (g, = 1)

klIEl(Vl - ny) = kZEZ(ny - VZ) (66)
which yields
Voo =¥, = (kE\ v, + k,E,n)/ E, : (67)
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“90° " laver
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Fig. 9. Two-dimensional idealization of the laminated plate.

Fig. 10. The auxiliary problem for calculation of the equivalent mechanical properties.

Similarly, the equilibrium conditioh along the co-ordinate X under the uniform tension in Z (g, =
yields

k\E\(e, — v,) =k, Ey (v, —e,)

(€
e,=Eq/E, e,=EnlE,

Exploiting the relation for orthotropic material, E,v,, = E, v_,, and using the symmetry condition in
and Y gives

Ve: = V,v: = E:(klvl + kZVZ)/Ex

s

Eqs. (65), (67) and (69) represent the equivalent orthotropic material properties for the two-pha
material described in Fig. 10.

In the second part of this appendix we will show that for the axial tension problem in
heterogeneous medium only a two-dimensional discretization is necessary.

Consider the two-scale asymptotic expansion of the strain field for the axial tension problem

Ve =V, = kv +ky,

4] 4
€ap = (85,855 + h(u.B)yB )575 + h(u.B)33833 + O(e)

ayO3s
= (‘Sak‘sp/ + h(u‘B)kl)Ezl + O(e) : (7

and
£33 = €3, = CONSL £, =60y =0 (7

where Greek subscripts range from one to two. The corresponding strain variation is given by

— 0 0
85«3 = (6a78[35 + h(a,B)‘y&) 8575 + Sh(u,ﬁ)klskl (

while other components of the strain variation vanish.
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From the axial tension problem in the uniform tension, &,y = sn, and the weak form of equilibrium

Substituting (70)-(72) into (73) yields

j (G (a,/3)78) 86:6 + Sh(a.B)klglI:/)

X (D ﬁ{n(Bfmann + h(f.n)mn) + Daﬁ3363m51n)8mn d‘Q = 0 (74)
Applying the integration rule for highly oscillatory functions on ¢ [1] results in a macro equilibrium
equation

f 86050, 5,565 A2, = f 860, D, 55265, 402, Yu € C'(Q) ' (75)
where

0375 f (84“’6/3/4 + h(t-u)nB)Dva(ovv(S«‘f + h .‘);/5 ) de

L (76)
Dopss = f (BauBss T vy N Doneliin 133 T Diis) 40
and micro (unit cell) equilibrium equations
f 8 0. gyt Dapenls. myvn 40 = 'L h(a g1k Dapun 40 = Aeys -

j 8hq. gyt Dapenfiis. n)33 do = 'J B o pyxiDapss 40 = hg3s

For details on finite element discretization of macro and micro equations see [13].
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THE MULTI-GRID METHOD
FOR A PERIODIC HETEROGENEOUS MEDIUM.
PART 3: MULTISCALE MODELING AND ADAPTIVITY

Jacob Fish and Vladimir Belsky
Department of Civil Engineering and Scientific Computation
Research Center,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA

An adaptive computational technique for analyzing problems in a periodic hetero-
geneous medium is developed. The optimal two-scale computational model con-
sists of the finite element mesh constructed entirely on the microscale in the
regions identified by the idealization error indicators, while elsewhere, the model-
ing level is only sufficient to capture the response of homogenized medium. The
resulting linear system of equations is solved using two global-local versions of
the multi-grid method with homogenization-based intergrid transfer operators.
Numerical experiments show the usefulness of the proposed multi-level adaptive
technique for predicting the detailed response of composite specimens.

1. Introduction

The computational complexity of modeling large scale composite structures is enor-
mous. For example, the typical size of the structure (an airplane or a car) is of the order
of magnitude of tens of meters, while the diameter of the fastener hole is of the order of
millimeters. Prediction of micro-mechanical failure modes necessitates considerations
at even smaller scales. The useful life of a structure depends on the quality of modeling
at each scale and the ability of a reliable transfer of the appropriate information
between various modeling levels. Thus, the need for reliable analysis techniques at
several different scales is crucial.

In this paper we present an adaptive two-scale computational technique for analyzing
problems in periodic heterogeneous medium, which combines the versatility of multi-
grid technology [1-3] with inter-scale communication skills of homogenization-based
prolongation and restriction operators [4,5], and reliability of microscale reduction
error (MRE) estimators and indicators [6]. The primary objectives of this scheme are
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two-fold:
(i) The construction of an optimal two-scale computational model

The optimal two-scale computational model consists of the finite element mesh con-
structed on the microscale in the regions where there is a necessity to do so, while else-
where, the modeling level is only sufficient to capture the response of homogenized
medium. The microscale reduction error indicators described in section 3, are aimed at
assessing the quality of homogenized model, and identifying the regions where the
homogenized model should be replaced by a more refined computational model reflect-
ing the details of the microstructure.

(ii)_An efficient solution of the two-scale computational model

Due to the scaling issue, it is common in practice to obtain a detailed local response by
means of post-processing techniques, such as subjecting a local model to the boundary
- conditions obtained from the global analysis. This approach does not guarantee a reli-
able force transfer between the global-local regions, but is very efficient in the sense
that the total CPU time is the sum of the global and local analyses as opposed to the
roughly quadratic growth in CPU time versus the problem size in the case of the direct
couple solution (or, to be more precise, NBz,where N and B are the problem size and
the bound width).

The multigrid technology and in particular MLAT [7] and FAC [8,9] are excellent can-
didates for reliable global-local analyses of well-conditioned problems, mainly because
the CPU time is proportional to the problem size. In this paper, we show that it is possi-
ble to maintain similar performance for the case of differential equations with highly
oscillatory periodic coefficients giving rise to poor-conditioned linear systems [4], if
the homogenization-based intergrid transfer operators [5] are employed in the context
of MLAT and FAC.

Between the two techniques, MLAT is more sensitive to the formulation of intergrid
transfer operators since the communication between the grids is performed through the
entire local region domain as opposed to their interface only as in FAC. This has a
direct consequence on the performance of the two methods in the case of periodic het-
erogeneous medium.

In practice, the local regions requiring consideration on the scale of microconstituents
may contain tens thousand of degrees-of-freedom. The philosophy of MLAT, which
has a natural mech: ...sm for capturing oscillatory response as well as smooth modes of
errors, is more suitable in this case. On the other hand, for locally non-periodic micro-




structure or curved boundaries of local regions, that cannot be sufficiently accurate rep-
resented by a spatial periodicity of the unit cell, the global-locai procedure in the spirit
of FAC seems to be a natural choice.

The outline of this paper is as follows. Section 2 describes an adaptive global-local pro-
cedure for periodic heterogeneous medium. Microscale reduction error indicators and
estimators aimed at quantifying the quality of homogenization and at steering the adap-
tive process are given in section 3. A numerical experimentation of the proposed adap-
tive multiscale computational scheme conclude this manuscript.

2 ription of iterative gl -1 lgori r a heterogen medium

In this section we present the formulation of an iterative global-local algorithm for
solving the problems in a periodic heterogeneous medium where one or more regions
are modeled on the microscale, while elsewhere the medium is treated as homoge-
nized. Our formulation is applicable to general three-dimensional domains with unlim-
ited number of local regions, although for simplicity, our illustrations will be limited to
two-dimensional problems with a single local region. Attention will be restricted to a
two-level scheme.

2.1 Problem definition and notation

Consider a heterogeneous medium on Q which is formed by a special periodicity of a
unit cell. Suppose, that the Microscale Reduction Error (MRE) indicator to be
described in section 3, indicates, that the classical homogenization procedure is not
valid on the portion of the problem domain, denoted by Q < Q. Therefore, the optimal
computational model consists of the finite element grid G on Q = Q/Q, where the
elements are assumed to possess homogenized material properties, and a finite element
grid G, with much smaller elements constructed on the microscale.

The grid G, subsequently to be referred as a micro-grid, can be partitioned as follows:

G = G,uGL (D

where G, are the micro-grid nodes at the interface r ; between the two regions, and G,
are the interior micro-grid nodes as shown in Fig. 1.

Likewise the grid G, termed as a macro-grid, is partitioned in a similar fashion:

G = G;uGg | @




where G are the macro-grid nodes at the interface I’ ;» Which do not have to coincide
with the nodes in G, and GG are the remaining macro-grid points.

We further define an auxiliary grid G on Q, where the entire finite element mesh is
modeled with homogenized material properties. The grid G is aimed at capturing the

lower frequency response of the two-scale grid model G U (. The auxiliary grid is
partitioned as follows:

é'é{UéLUéG 3
where é, = G, éG = G; the grid éL represents auxiliary grid points on Q as
shown in Fig. 1.

To transfer the information between the micro- and macro- scales we employ homoge-
nization-based prolongation operator Q developed in [5]:

Q= Q+dQCVN(x) on & @
where Q is the standard linear prolongation operator; d is the unit cell solution:
VSN (x g) the symmetric gradient of the shape functions in the auxiliary grid evaluatec
at the Gauss points in the auxiliary mesh; C the projection operator aimed to maintain
c? continuity of the displacement field on the micro-scale.

It is important to note that in general operator C is of a global nature, i.e., there is an
information flow between any Gauss point and grid node in the auxiliary mesh G. This
leads to the global nature of the homogenization-based prolongation operator (4), i.e.,
if the grid G is defined on the entire problem domain, there is an information flow
between any two points in G and G. At the same time, it is possible to employ a pro-
jection operator on the patch-by-patch basis [10] which leads to the homogenization-
based prolongation operator (4) of a local nature.

In both cases, the homogenization-based prolongation operator Q consists of two parts.
The first denoted by Q, relates the nodal displacements in the macro grid G to those in
the micro grids G at the interface I ; only:

QOG—)G, )]

where

O = [énélc] ®)




such that

QueGi—»G, and ngof}(;—-)G, (N
Note, that the standard linear prolongation operator relates the information at the inter-
face only, between G, and G, as opposed to operator 0 j¢ Which is a function of
\% N (x ) on Q resulting in the information flow between any two points in GG and
G 2
Likewise we define a second part of the homogenization-based prolongation operator

denoted by 0 which communicates between the auxiliary grid and interior micro grid
nodes:

geG—G, ®
where
0 = (0,00 o
such that
éLl.c.;I_)GL and éLL‘éL —)GL (10)

Hence, the final form of homogenization-based prolongation operator Q can be
expressed in the following manner

5 - [‘?" N @IG} w
QriQir O

The homogenization-based restriction operators Q eG—>G and Q* °G,— G are
conjugated to Q and Q, and are schematically denoted as

- K . *"
Qu Qrs -
5" -k A% o | Qi
Q = 0 QL and Q =|.", (12)
- % QI
Qi O |

For subsequent derivations we will introduce the following notation:




-~ ~ -~ - * “ye . . -~ ot -~ -~
i = [“1 iy i G] - auxiliary grid displacement vector, where u € Gy, u; € G,
I}G 3 GG. ]

%

- [‘71 : ‘IG] - macro-grid displacement vector on .

£

x

U = [u / ;"L] - micro-grid displacement vector, such that [€ Gyand u; € G ;

A AL A
A= ALI ALL 0 | - auxiliary grid stiffness matrix on G;
AGr 0 Agg
- |Ay A
A= |7 TG - macro-grid stiffness matrix on G, such that Agg = AGG and
AGIAGG AIG = ArG;
A Al i et EFae : .
A= - micro-grid stiffness matrix on G;
ALl ALL
- -% -~ - -
fom I:f x - auxiliary grid forcie vector, where f, f;, f are nodal forces acting

on grids G, éL, G, respectively.

fom [f 2 ] - macro-grid force vector on G, such that f; = f5;

f = Ef f] - micro-grid force vector, where the nodal forces f; and f; are applied on
the grids G, and G, , respectively.

We note that the displacement vectors & and & are related via orthogonal assembly

operator L given by
= 100 (13)
00!/ |

where / is an identity matrix of an appropriate size, such that

A

4= Li a9

We are now in a position to formulate an algebraic system for two-scale linear elastic-
ity problem in heterogeneous media. It consists of finding a pair of nodal displacement
vectors (i, u) such that

e




1/2( (A, 0) + (Au,w)) = (F. @) = (f.u) = min (15)
(&, u)

subjected to the compatibility condition at the interface

u; = Qu (16)
Minimization of (15) with respect to (&, u) subjected to the interface condition (16)
yields a system of linear equations:

A ¥ A A% A Ak
(A+Q A;Q) Q Ay [ﬁ:l - +Qf n
u
The system of linear equations (17) can be solved either directly or iteratively. The

direct solver is not well suited for adaptive computational environment, where the
region requiring a more detailed interrogation, is not known a priori.

It is our objective to develop an inheritant iterative solution procedure, which exploits
the solution from the auxiliary problem on G in order:

(i) to identify the regions where the homogenized finite element model is inadequate,
and

(ii) to predict the lower frequency response of the two-scale model.

Section 3 deals with the first item, while in section 2.2 we focus on developing such an
inheritant solution scheme.
2.2, Iterativ - ion

The three-step iterative solution procedure, which is based on minimization of energy
functional (15) on various subspaces, is summarized below:

Step 1.
Find the correction v' which minimizes the two-scale energy functional (15) on the
subspace of the auxiliary grid functions, i.e.,

.

172 (A& +L5Y, 8"+ L") + (A + 0V, o' + 0VY))
o . . (18)
- fa'+L¥") - (f u' +QV) = min

~l
v




where the superscripts refer to the iteration count.
rqe . . -~ ] . . ) . d . -~ *
The aux1harg‘ grid correction v has similar partitioning to u, i.e. v = [{, / ;GL ;;GJ and

V= [;1 “’G] .
A direct minimization of (18) with respect to 7' yields:

(L*AL+Q7AQ) % = L* (F-Ad) + 0" (F- Au) 19)
The first term on the left hand side represents the assembled form of the macro-grid
stiffness matrix. It has been shown in [5] that for an infinitesimally small unit cell the

second term represents an assembled form of the stiffness matrix on the auxiliary grid
GL’ ie.:

lim (L*AL+Q AQ) = A 20)
e—=0 ,

In practice, however, the value of the representative unit cell size € is finite, and thus
(20) is satisfied only approximately. Nevertheless, for the purpose of approximating the
auxiliary grid correction v; we will replace the Jacobian matrix in (19) by A. In the
adaptive environment this will significantly reduce computational effort. By this tect

nique only a single factorization of the auxiliary stiffness matrix is required, indepen-
dent of the refinement process, which involves replacement of the homogenized grid

by heterogeneous one in the regions identified by Microscale Reduction Error (MRE)
indicator. '

Step 2.
Once the auxiliary grid correction has been carried out it is necessary to update the
solution in the auxiliary grid:
o i i Wi i " . . ~ 1
Pt e drod 2t m i oL P IpIY, @1
The relaxation parameter is introduced to account for the approximation introduced in
(20) as a result of a finite size of the unit cell. The relaxation parameter is found from a

1-D minimization of the energy functional along the direction #' evaluated in the previ-
ous step (19):

1/2((A (@' + oLV, &' + oL#) + (A (4 + 00F) , & + 007))

N : . . 22)
- (fa'+olv) - (f ul + 0Q%') - i
w




which yields

_ WL(- Aa’>+Q (f- Au'), 3
((L AL+Q AQ)v‘ ")

23)

Step 3.

Find the correction vi on the micro-grid, which minimizes the energy functional on the
subspace of the functions on the micro-grid G, , i.e. keeping &' fixed:

1/2((Ad', 2') + (A +v)), b +vD)) = £ 8D = (F ' + V) > min 24)
V

where vﬁ = 0 on ['; to maintain compatibility.
The direct minimization of (24) yields

i i '
Appvy = fr=AQ0' =A; u) @)
If (25) is directly solved and

ulL+ 1 - u;‘ + v;‘ 26)
then the three-steps iterative process described is in the spirit of FAC algorithm [8,9],
subsequently to be referred as FAC-Comp.
Because of the smallness of the unit cell, the number of degrees-of-freedom in micro-
grid is of the same order of magnitude or larger than in the macro-grid. Moreover, the
solution behavior in the micro-grid is highly oscillatory with a lower frequency
response similar to that in the auxiliary mesh. These two observations suggest to
replace the direct solution of (25) by smoothing of the form given by

+1 [ i ] ]
ui - u'L+t‘PLL (fL—ALIQﬁ‘ -ALLu'L) 2N

where P, , is a preconditioner on the micro-grid G ;, and ! is a relaxation parameter
given by

i i i
d - (L= AL QY = AL up,v)) 2
(ALLVZ.’ VL)




This variant has similar characteristics to the linear version of MLAT [7], and will be
termed as MLAT-Comp.

3. The microscale reduction error estimators and indicators

3.1. Formulation

In this section we quantify idealization errors associated with homogenization of peri-
odic heterogeneous medium and present their use in the adaptive procedure. The pro-
posed Microscale Reduction Error (MRE) estimator is based on assessing the uniform
validity of the double scale asymptotic expansion [11-13], which is given by a rapidly
decreasing asymptotic sequence:

where x is a macroscopic position vector, y = x/¢ is the co-ordinate in the unit cell,
and ¢ is a small parameter of order of the unit cell size.

Following [11-13], functions H, u® and P are found by inserting asymptotic expansion

into a strong form of equilibrium equation and by identifying equal powers of €, whic!
yields:

%(DU“(H“’ Dmn* 8mdy)) = O on unit cell 8, a0)
9 (D, ) +b, =0 Q 3
3 ijki% (g, n) *b; on GD

where D, ik and [),- jk1 are constitutive tensors of a heterogeneous medium and corre-
sponding effective medium given by

- 1
Dpgmn = Y—Al H i, npa* 0ip%g) Pijrr H (k, ymn + Bym®1) ¥ 0D

and

a - » .. -
E(Dipkl(P(k, hmaj * Hiemn®1p) *+ Dijit (H 1y mn+ SnP1n) = Pijmn = 0 33
on unit cell By

Problems (30)-(33) are solved using finite element method [5] starting from the prot
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lem (30). The resulting asymptotic expansion of the stress field is given by

oy = Agu Uy, 1) (9 FeA () 1 (0 +0 (eD) 39
where
0
Az]mn( y) = Dijkl (H(k, l)mn+6k, maln)

3%)
)
Azjmnp () = Dijkl (P (k, ) mnp + Hkmnalp)

In the classical homogenization theory only the first term in (34) is considered, while
the second term is neglected. Thus, the quality of the homogenization is assessed on
the basis of the relative magnitude of the first term neglected to those taken into
account. The resulting Microscale Reduction Error estimator is defined as

leav2®lp, o

4%, 0

where | ® |, g isa L, -norm defined g,s

1A (e g q = —(le (x, y)de.Q)l/2 &)

To steer the adaptive process we define the MRE indicator, which reflects the relative
contribution of individual element in the auxiliary mesh to the total microscale reduc-
tion error:

]"| - (36)

e" GA;lq"g lq“o, Qs Q

T af

n¢ (38)

|4k, ], g

This approach is equivalent to the one employed for discretization error indicator [14].

3.2, Explicit form of n_and n°in 1D

In this subsection, we derive a close form of MRE indicators and estimators for a 1D
model problem in order to study various factors affecting the microscale reduction
errors.

Solution of (30)-(33) for H and P yields:




h -1

A=) = (%J‘D'ldy] = const, (39)
0
and
bh
Al = F{de = const, (40)

where D are the effective material properties and 4 is the unit cell size. Inserting (39)

and (40) into (36) yields the one-dimensional counterpart of the microscale reduction
error estimator

}dzu0
h - 2 .
D dx” llo,Q
- —— =1)dy- 1
n ,(')‘(D(y) ) )’7;5—-— @n
dx

For the unit cell consisting of two_ phases with compliances C; = 1/D, and
C2 = 1/D, (the overall compliance C= = (C,+C,, C = 1/D), a the volume frac-
tion, the resultmg MRE estimator is given by

dx2
é_l_‘_o
dx 0,Q

From the above expression we can identify four factors affecting the microscale reduc-
tion error:

1. The size of the unit cell, A.
2. The normalized difference cl>f compliances,

3. The fiber volume ratio, —-z—a).

IC1=Cla(l-a)

0,Q

42)

¢ '°2|

d%u

4. The macro strain gradients,
dx2

0,Q
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It can be seen that the error estimator is asymptotically exact in the sense that the
microscale reduction errors vanish if either the normalized strain gradients are negligi-
ble, the unit cell is infinitesimally small, the compliances of the microconstituents are
almost identical or the volume ratio is close to either zero or one, which corresponds to
a homogeneous material.

4, Numerical resul

Our numerical experimentation agenda includes two test problems. The first example
deals with the square plate with a centered crack subjected to a uniform tension. Geom-
etry, boundary and symmetry conditions, material properties and loading are shown in
Fig. 2. The micro-mechanical finite element mesh includes 4 elements per each unit
cell corresponding to the material distribution. The finest macro-mechanical grid G
with homogenized material properties consists of 64 elements along each co-ordinate
where each element coincides with the unique unit cell.

The distribution of homogenization errors as indicated by MRE indicator is shown in
Fig. 3a. The micro-grid, G, is placed on the portion of the problem domain, which
encompasses the contour of ¢ > 1 as shown in Fig. 3a. For simplicity the grid G on Q
is selected to be of rectangular shape. Thus the two-scale model consists of a micro-
grid in the region encompassed by 12x20 unit cells in the vicinity of the crack tip,
while elsewhere Q/ Q, the finite element mesh is constructed on the macro-scale.

The multi-grid process was carried out on three different meshes: two-scale (macro-
micro) grid and two auxiliary macro-grids. We used V-cycle with 1 pre- and 1 post-
smoothing Gauss-Zeidel iterations on the two auxiliary levels and 2 pre- and 2 post-
smoothing Jacobi iterations on the finest level. As usual, on the coarsest level we used
a direct solver. As a termination criterion we used the following tolerance to bound the
ratio of the two-scale grid residval norm versus the norm of the right hand side vector,
ie.,

n
irl5/Ifl,<eps  where |v|, = Z v| ve R 43)
i=1
To obtain convergence with tolerance of eps = 1073 it was necessary to carry out 14
cycles using MLAT-Comp algorithm and 7 cycles with FAC-Comp method.

_The resulting energy distribution absorbed in a unit cell in the micro-grid is shown in
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Fig. 3c. For comparison purpose also shown are the results obtained on the basis of the
classical homogenization theory and the reference solution where the entire problem
domain Q is modeled on the microscale. It can be seen that the classical homogeniza-
tion theory significantly underestimates the energy absorbed in the close vicinity to the
crack tip. On the other hand in the radius of 2-3 unit cells away from the crack tip the
classical homogenization theory is adequate. ‘

In the second example, we comsider a multiscale modeling of laminated plate
[90,70,5/904] subjected to uniform axial tension. Geometry, boundary and symme-
try conditions and the micro-structure cross section for the different layers are shown in
Fig. 4. We considered Glass-Epoxy composite material with the following material
properties: E, = 723 v, = 022 and E, = 2.92 vy = 035 . The uniform
tension load was applied normal to the xy plane. The finest level of macro-grid G con-
sists of 24 elements along the co-ordinate x (thickness direction) and 192 along y, each
element coinciding with the unique unit cell.

The distribution of the homogenization errors and the region selected for micro-
mechanical modeling are shown in Fig. 5a. The micro-grid consists of 14,400 elements
placed in the region encompassed by 24x24 unit cells in the vicinity of the free edge.
The two-grid model contains approximately 38,000 degrees-of-freedom. The multi-
grid process was carried out on three different meshes: two-scale (macro-micro) grid
and two auxiliary macro-grids. We used V-cycle with 1 pre- and 1 post- smoothing
Gauss-Zeidel iterations on the auxiliary levels; 3 pre- and 3 post- smoothing Jacobi
iterations on the finest level and direct solver on the coarsest level. 1% error of residual

(43) was obtained in 8 cycles of MLAT-Comp algorithm and 8 cycles of FAC-Comp
method. '

Fig. 5b,c,d compare shear stress distribution in the micro-grid as obtained using two-
scale model, homogenization theory and the reference solution. Results are consistent
with our previous observations, i.e., inadequacy of the classical homogenization theory
in the “hot spots” as opposed to striking accuracy of the two-scale model.

The goal of the last numerical example is to study the effectiveness of MLAT-Comp
algorithm for solving large two-scale models. The problem domain, boundary condi-
tions, loading, material properties distribution on the unit cell and the micro-mechani-
cal finite element mesh are the same as in the first example. The computational model
contained a micro-mechanical finite element mesh in the region of 176x176 unit cells
in the vicinity of the crack tip, while elsewhere, the finite elements were treated as
homogenized. The macro-mechanical finite element mesh consists of 352 elements
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along each co-ordinate. Each macro-mechanical finite element coincides with the
unique unit cell. Hence, this problem contains 435,074 independent degrees-of-free-
dom. ,

The multi-grid process was carried out on the 4 different meshes: two-scale (macro-
micro) mesh and three auxiliary macro-mechanical meshes. We used V-cycle with 1
pre- and 1 post- smoothing Gauss-Zeidel iterations on the two auxiliary levels and 2
pre- and 2 post- smoothing Jacobi iterations on the finest level. As usual, on the coars-
est level we used direct solver. It was necessary to perform 15 multi-grid cycles to pro-
vide the convergence with eps = 0.01 in accordance with criteria (43). Only MLAT-
Comp algorithm was tested, since the micro-grid contained over 100,000 nodes, and
the direct solution on the micro-grid is not practical. This computational process takes
about 8.2 hours on the SPARC station LX, which is 17.2 times faster than the use of
traditional direct solver (even without taking into account the memory difficulties,
associated with the direct methods). :

wl n
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Fig. | Partitioning of the auxiliary and micro grids
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Fig. 2 Plate with a centered crack: geometry, boundary conditions, material properties and loading
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Fig. 3 Microscale modelling of the plate with a centered crack and comparisons
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Fig. 4 Plate subjected to the axial tension: geometry, boundary conditions and micro-structure
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Fig. 5 Microscale modelling of the plate subjected to the axial tension and comparisons
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The p-version of finite element method for shell analysis

J. Fish, R. Guttal
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Abstract A new quadrature scheme and a family of hierarchical
assumed strain elements have been developed to enhance the
performance of the displacement-based hierarchical sheil
elements. Various linear iterative procedures have been
examined for their suitability to solve system of equations
resulting from hierarchic shell formulations.

1

Introduction

Since early seventies there has been a disagreement between
various sections in the finite element community over the
computational efficiency of higher order elements. Onone hand
there was a clear mathematical evidence of the superior
theoretical rate of convergence (measured in terms of the
problem size) of the p-type methods for properly designed
meshes as demonstrated by Babuska, Szabo, and Katz (1981)
but on the other hand, it was commonly believed, primarily in
the engineering community, that the h-method is
computationally more efficient due to its superior sparsity. The
disagreement has peaked in the early nineties. For example, in
the First US Congress on Computational Mechanics, Bathe
presented numerical resuits conducted on Floyd pressure vessel
showing the superior performance in terms of CPU time of the
h-method even for problems for which the exact solution is
analytic. At the same conference Carnevali reported [BM
research division findings on similar problems suggesting
exactly an opposite trend.

In practice, computational efficiency of various finite element
versions depends not only on sparsity and theoretical rate of
convergence, but is a function of several other factors including
adaptivity and quality control, conditioning, distortion
sensitivity, locking, model preparation and model
improvement, utilization of previous computations and coding
simplicity. [ronically, there is no general consensus on the
relative merits of some of these factors. For example, it has been
argued that for p-type methods the finite element mesh is
simpler, and thus the time required for data preparation is
substantially smaller. Unfortunately in automated
computational environment the cost of automatic mesh
generation of higher order elements is not necessarily lower
than that of the h-method (Shephard and Dey 1994).
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The p-method has been commended for its versatility in the
adaptive process due to its ability to exploit previous
computations and the elegance of hierarchical error estimation
process (Zeinkiewicz and Craig 1986). However, it is often
overlooked that the sequence of lower order finite element
meshes generated in the adaptive process can be utilized for
both solution and quality control processes by utilizing
multigrid technology (Brandt 1977).

Contradicting observations were reported regarding the
sensitivity to element distortion. Holzer, Rank, and Werner
(1990) present experimental results indicating that higher order
elements are less sensitive to mesh distortion, while Ramm,
Stander and Matzenmiller (1989) in their review article on
assumed strain shell formulation report that 4-node bilinear
shell elements are less sensitive to mesh distortion than their
quadratic counterparts.

In the realm of opposing views, there is a sound theoretical
evidence on superior conditioning of matrices arising from
orthogonal basis functions (Zeinkiewicz and Craig 1986), and
circumvention of locking with higher order elements as shown
by Szabo, Babuska, and Chayapaty (1989). Nevertheless, since
the overall computational efficiency is strongly linked to
the program architecture, it is not obvious what are the
contributing factors of these aspects.

The present work focuses on the computational aspects of
the p-version for shell analysis. The following aspects are
studied:

e How to enhance the performance of shell elements up to
the polynomial order of 4-5 using assumed strain
formulation. :

e How to speed up the computation of element matrices by
utilizing previous computations and how to exploit
hierarchiality of the p-method via special quadrature
scheme.

o How to exploit the well conditioning of matrices arising
from the p-method by utilizing the multigrid like
technology with various acceleration schemes for thick
and thin shells.

Element formulation

2.1

Preliminaries

Consider the geometry of a typical quadrilateral shell element
defined by the following relation:

X =4+ 5) X5 3) + (1= H) X7 )] ()
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Assumed natural strain field

In order to alleviate membrane and shear locking primarily at
lower polynomial we define an assumed natural strain
interpolants B}" = {5"*! in the following manner: Let

(NG, NG,, NG, ) be the number of quadrature points for the
dxsplacement based formulation. To enhance the element
performance, we introduce a special set of one-dimensional
shape functions [¢,(Z)), #((<)), Dy (5,)] defined with nodes at
reduced quadrature points (£, 2 I Z,¢) where Je[1,NG, — 1],
Ke[1,NG, — 1], M={1, NG, —1].

The generai form of | &%} is given by:

NG, -1t

bl?f‘ Z b:?:(w::=:x(’~nsk)¢ 3)

{=l

no sum on i

NG~ NG, -1
bnat

DD

[=1 [=i

u:‘ = 3,1’5] = Ej/)gk) ¢1(é,) ¢!(;—l)

{#j nosumoni,j (10)
2.2.4

Stiffness matrix calculations

Since the constitutive relations are expressed in material
coordinate system, the natural strains are transformed to
material coordinate system. From Egs. (4) and (5), the strain
components in material coordinate system are defined as:

- ¢ C8 éx 7 éx
:u=—,——ls..=[7;5] [,—,’] &; = Ty (11)

A i) =
. 0%, és, ég;

a

or
==T¢ (12)

and the element stiffness matrix can be cast into the classical
form:

K= )‘ﬁnatr D: §nnl an
2

where B™ is defined by Eq. (10) and

D‘=TTD*T (13)
D* is the constitutive matrix defined in the Materiai coordinate
system.
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H3RANS - Hierarchical (3 — D) reduced transverse stiffness,
Assumed Natural Strain element

For the purpose of examining the causes of somewhat stiffer
behavior of H3-type elements compared to their degenerated
counterparts (Stanley, Levitt, Stehlin, and Hurlbut 1992), we
consider a beam problem. For elastic isotropic beam the strain
energy is given by,

== [(Dy? + Dy & + Dy 7%) dx (19)
L .

NI'—‘

where L is the element length; ¢, , and ; are the membrane
strain, curvature and transverse shear strain respectively; D,,
D,,, and D, are the bending, membrane and shear stiffness

constants given by,

Et

D5=E D,=Et Ds=k,Gf (13)

where t is the thickness of the beam of a unit width; £ the Youngs
modulus; G the shear modulus and k, the shear correction factor.

In the classical beam formulation the normal strains u are
a posteriori calibrated to maintain zero normal stress (plane
stress assumption), and thus have no contribution to the strain
energyin Eq. (14). It can be seen that as ¢t — 0 the bending energy
becomes negligible in comparison to shear and membrane
energy giving rise to shear and membrane locking, if the element
cannot represent deformed state in which shear and membrane
strains vanish through out the element (Belytschko, Stolarski,
Liu, Carpenter, and Ong 1985).

In H3-type beam elements normal strains are computed
directly from kinematics. These values are not arbitrary and
cannot be calibrated to maintain plane stress condition. Thus
if two dimensional state of stress is considered, the resulting
strain energy takes the following form:

== [(D,x* +eDopu+ Dyt + D, ) dx (16)
L

NI""

[t can be seen that in H3-type flexural elements spurious
coupling between membrane and normal deformation exists
giving rise to a parasitic transverse normal strain energy, which
is of the same order of magnitude as that of the membrane strain
energy if the strains are of equal order. This phenomenon is
referred here as the transverse normal locking of H3-type
flexural elements.

To ameliorate the locking caused by the transverse normal
strains we propose to calibrate the constitutive behavior of
H3-type elements to match the strain energy corresponding to
H2-type elements without introducing zero energy modes. This
is accomplished by modifying coefficients in constitutive tensor
in the following way:

Dy=Dy Dy=D, D=0 D,=yD, (a7
where  is a stabilization parameter aimed at stabilizing the zero
transverse normal energy modes of H3-type flexural elements.

2.4
H2ANS - Hierarchic (2 - [) Degenerated Assumed Natural Strain
element with rotational degrees-of-freedom
In this section we attempt to formulate a degenerated assumed]
strain shell element, which employs blending functions or
Lagrangian basis for geometry mapping and Legendre
polynomials for solution interpolation.

As a starting point, the displacement field is expressed in
terms of mid-point translations u{($,, $;) and mid-point
rotations 8, (,, &,) which are defined with respect to the fiber
coordinate system:

ul utl = 9

) ; 1
u, ={u +—2-[—te:f, te{](‘,“:l,{e} (18)
s (5,480 5 FENEN
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Proof. Substituting (20) and (21) into left hand side of (22)
yields:

[gd2=Y S LYY Y a.b

el f

(23)

Likewise, the right hand side of (22) gives:

L

Y [ g6,d2] h6,d2

=102 2

i -1

593 Z’(b,m [ BB 20 de, | B(E) B (&) dg,

p=04q=0 v={0

1 Lok L
. ). P(S)P,(S)) d:;) = z z Z a:jkbijk= Z ab, (24)
21 [=1

=0 =0 k=0

The dot product of integral decomposition was originally
proposed by Hinnant (1993). The quadrature based on dot
product integral decomposition is optimal in terms of number
of integrand evaluations for hierarchical systems. To clarify this
point we consider a one-dimensional case. Let g = {g} and
h = |h} be vectors whose terms represent the hierarchical
sequence with increasing polynomial order, where subscripts
on g and h denote the polynomial orders and i, je([0, p]. In
evaluating integrals of the form G, = fgP(Sdiand H =
{ h.B,(3) d&, where k&[0, i] and 1[0, j], the number of function
evaluations for (g, k) is (i + 1) and (j + 1), respectively. Thus
the total number of function evaluations for computing ail the
integrals of the form G, and H, is (p + 1) (p +2) as opposed
to 2(p + 1)* for uniform quadrature. It can be shown that
this estimate grows exponentially with the increase in the
number of space dimensions.

The major drawback of Dot product integral decomposition
is the lack of symmetry, which leads to:

1. Non-symmetric stiffness matrix if g and h are of different
polynomial orders (such a situation may arise in the case
of material or geometric nonlinearity).

2. Redundancy in evaluating each of the two integrals G, and
H,, which, except for the term involving constitutive
tensor, should be identical.

3.3

Symmetric dot product integral decomposition

In this section we present a variant of Dot product integral
decomposition which preserves the symmetry of the stiffness
matrix. Consider a typical stiffness term given by

k,;=]B.DB,J df2
2 N o’
Bahs
In an attempt to obtain a symmetric dot product integral
decomposition, we decompose the integrand (g, hy) as follows:

(25)

h{=g,=B{L/" (26)
where L is a lower triangular Cholesky factor of the constitutive
matrix D. The resulting stiffness matrix is given by

(27)

L
k=Y [ (LB ¢,/ "dQL"B,0,]"dR
2

I=1

Each of the integrals is integrated using Gauss quadrature. The
number of quadrature points as well as the maximum
polynomial order of the interpolating Legendre polynomials
in each direction depends on how well the integrand L™ B, J**
is approximable by polynomials and what is their polynomial
order. We will refer to this integration scheme as Symmetric
Dot Product (SDP) Gauss quadrature.

In case when the constitutive tensor D is not positive definite
an alternative integrand decomposition is employed. Let

g.=BlJ" hy;=DJ"B, (28)
yielding
: 5
k=2 ;}BU”Z d)ld‘oé, D¢, B,/ dQ (29)
(=]

hy

and further dot product integral decomposition of the second
term in (29) yields the following symmetric form:

L
k=3 Y [(BI]")¢,dR-{(D)p 6,dQ- | (B;]")$,dR2
[=i/=102 Q T Ie] (30)

Note that if the constitutive tensor is constant,
D, = [,(D)¢,¢,d2 = D3, reducing Eq. (30) to

M-

k= (31)

j(B,{I”z) ¢1d-Q' D- j (B;]m) ¢1d-Q
2 n

._
]

In can be easily shown that if D # constant, stiffness matrix
evaluations by means of Eq. (30) is more computationally
intensive because of the double summation involved.
Nevertheless, the triple integral decomposition (30) might be
useful in the following two scenarios:

e Thick laminated composite shells with multiple layers and
variable jacobian through the thickness.

o Small deformation nonlinear material analysis, where the
first term in (30) can be computed only once and then
reused in the nonlinear incremental iterative process.
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Q7 7"and Q7 _, be the restriction and prolongation operators,
which transfer the data from level (m) to level (m — 1) and vice
versa. For the p-method it has a very simple form:
QR 7'=I(I o[=Qy_T (39
where I is the order n__| identity matrix, and 0 is order

(n, —~n__ ) zero matrix. Note that the restriction of the stiffness
matrix is given by:

f(m—l__.Q:—lK'nQ:_i#K'n—! (40)

A single V-cycle has a compact recursive definition given by:

2" =MG™ (™ K™). (41)
where r™ is the residual vector. The V-cycle multigrid algorithm
is summarized below:

1. Loop i=0,1,2...until convergence
if i=0~d"=0
2. perform 7, pre-smoothing operations

. d™:=smooth(y, ,/d", K™, f™)

where the left superscript and subscript denote the cycle
number and smoothing count respectively.
3. Restrict residual from level mto m — |

l,.m—l — Q:—l(fm —_ K!l7lidm)

4. Coarse grid correction
If (m—1) =lowest level, solve directly z*~!
. (Km—l)-l ‘Jn—l,
Else 2" = MG™ '(r"",K™™")
5. Prolongate from level m — 1 to m

] { { m m—1
;'u-l‘dm = ;'.ldm +'wQn_ 2"

where ‘w is a coarse grid relaxation parameter, which
minimizes energy functional along the prescribed
direction v" = Q7_ 2"~'. Note that for two grid methods
‘w=1if K"~' = K"~'. Otherwise

vmr(fm —-K™. Hidm)
= -l 42
w vmr K™v™ ( )
6. Perform y, post-smoothing operations

~!d™: = smooth(y,,, . 'd", K", ") -

A variant of the standard V-cycle multigrid method (Brandt
1977) has been proposed by Bank, Dupont and Yserentant
(1988). The method termed as hierarchical basis multigrid
technique (HBM), is similar to the standard multigrid V-cycle,
except that a smaller than the normal subset of unknowns is
updated during the smoothing phase at a given level. HBM takes
advantage of the fact that smoothing mainly affects highest
oscillatory modes of error, and thus relaxation sweeps are
performed on the block by block level keeping the rest of the
degrees of freedom fixed. It has been shown by Bank, Dupont
and Yserentant (1988) that the rate of convergence of HBM

method has a logarithmic dependence on the problem size as
opposed to multigrid method which has an optimal rate of
convergence independent of the mesh size and spectral order.
The key question is whether the benefit from reducing the cost
of smoothing process over weighs the suboptimal performance
of HBM in comparison with the standard multigrid method
for thin and thick shells.

4.2
Two parameter acceleration of muitigrid method
For ill-conditioned problems, such as thin shells, it is desirable
to accelerate the rate of convergence of the multigrid like
methods. In this section we present a two parameter acceleration
scheme that requires a small fraction of computational etfort,
but at the same time is efficient in expediting the convergence
of the multigrid like methods (MG and HBM).

Let'r™ be the residual vector at the end of i* m-level multigrid
cycle. The incremental multigrid solution for the next cycle
2" = MG™('r™,K™) is used as a predictor in the two parameter
acceleration scheme. The solution in the correction phase is
then updated as foillows:

i+lv=i1izm+xﬁLv (43)

i+ldm=idm+i+lv (44)

where parameters ('2,'§) are obtained by minimizing the

. potential energy functional:

E(xdm+xzzzm+zﬂlv)TKm(ldm+nlxzm+:va)

—~(d™+ %z +'B'V)Tf" > min (45)
g

The resulting algorithm is summarized below:
Step 1
odm - 0’ orm - fm
OZMZ=MGM(0fM,KM)
vy =y=0
0x=Kmozm

(f",°2")

B=0 ‘a=——— (46)
B 0 (Uxm’ozm)
Step2 Doi=0,1,2,...unti convergence

i iy fagmt ig =1 (fim i m

2] _[(x2) (x AV)] {(irm.iz )} 50 )
‘B (xv) (yvw] (7'

i+xv=i1izm+iﬁ'iv
i+ldm = idm + i+lv

i-ly= izix+iﬁiy
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Each figure contains six plots:

o (O) HSOL-SDP corresponding to Symmetric Dot Product
Gauss quadrature for displacement based element.

e ([J) HANS-SDP corresponding to Symmetric Dot Product
Gauss quadrature for assumed natural strain element.

o (A)HAMS-SDP corresponding to Symmetric Dot Product
Gauss quadrature for assumed material strain element.

e (+) HSOL-UNIF corresponding to Uniform Gauss
quadrature scheme for displacement based element.

o (*) HANS-UNIF corresponding to Uniform Gauss
quadrature scheme for assumed natural strain element.

o ( x) HSOL-HBLOCK corresponding to Hierarchic Block
Gauss quadrature scheme for displacement based element.

To preserve hierarchical structure of the stiffness matrix the
displacement based shell element has been integrated to
accommodate for highi varying metric tensor components
¢x,/¢ % . For numerical exampies considered, the number of
integration points for Block Gauss quadrature was selected as
p™* - 3ininplanedirectionand 4™ + 1 in transverse direction,
where p™ and ¢™* are the maximum polynomial orders of the
corresponding block in inplane and transverse directions,
respectively.

Similarly, for SDP-Gauss quadrature applied to displacement
based elements, the order of interpolating Legendre
polynomials P () is selected as (p, + 1) i€{1,2] in inplane
directions and (g + m) in transverse direction. The
corresponding number of integration points are (p, + [ + 1) and
(g + m+1) in inplane and transverse directions, respectively,
where (p,, p,) are the polynomial orders of the integrand in
inplane directions (¢, ,) and q is the polynomial order in
transverse direction (&,). Selection of integers [ and m is dictated
by the variation of the metric tensor (x,/é$, in inplane and
transverse directions respectively. For example, in case of
constant inplane jacobian (the pinched cylinder) we used [ =1,
m=0and [ =2, m = 1 for the case of variable inplane jacobian
(frustum of the cone).

In case of HAMS elements the order of interpolating
Legendre polynomials is selected such that their polynomial
order does not exceed the maximum polynomial order of the
basis functions to ensure effectivity of selective polynomial
order reduction. On the other hand for lower order blocks the
polynomial order for Legendre polynomials is selected the same
as for displacement based elements to partiaily preserve
hierarchiality. Thus the order of Legendre polynomials for
HAMS element is defined using the following rule:

e For a given integrand with polynomial orders (p,q)

The inplane polynomial order of B,

={p,.+l if p+l<p 48)

p™*  otherwise

The order of Legendre polynomials in transverse direction
is selected as g + m.

e The number of inplane integration points is selected as
p™* + 1, and g™ + 1 in transverse direction.

It is evident from Figs. (1-4) that among the displacement
(HSOL) based elements, SDP and HBLOCK quadrature schemes
are computationally more efficient than the uniform (UNIF)
quadrature. The difference between HSOL-SDP and
HSOL-HBLOCK is not significant and it can be deduced that
for displacement based elements SDP and HBLOCK have
a comparable performance. It is apparent from the Figs. (1 -4)
that HAMS-SDP has higher computational efficiency than
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Table 2. Effect of radius to thickness (R/t) ratio on iterative methods.
Three cyclinder assembly modeled with 36 (H2AMS) elements

Solver (Rmin/t =100) (R min/t = 1000)
MG-GS-ACC(4,6,8) 300/25 13728/1144
HBM-GS-ACC(4,6.3) 27137 47879/6537
MG-ICC-ACC(4.6,8) 235/12 1191/97
HBM-ICC-ACC(4,6.8) 250/33 1476/294
PCG-ICC 330/144 1115/660
Direct 336/1 536/1

performance of the iterative procedures deteriorates, due to
increase in the condition number. Assuming that deterioration
in conditioning does not affect the accuracy of direct solution
due to round off errors, the direct solver has outperformed the
iterative procedures for very thin shells (R/t = 1000).

In Table 4 the influence of various popular smoothing
procedures (GS - Gauss Seidel; JPCG - Jacobi pre-conditioned
conjugate gradient and ICC - Incomplete Cholesky) on the
performance multigrid-like solvers (MG-ACC and HBM-ACC)
is examined. One smoothing iteration of each procedure is
incorporated. The experiments are conducted on the pinched
cylinder problem modeled with 16 elements with R/t = 10;

R/t = 100 and R/t = 300. For either of the muitigrid procedures
one Incomplete Cholesky (ICC) smoothing has been found to
be optimal in terms of CPU time for both thin (R/t = 100)

and very thin (R/t = 300) shells. For relatively thick shells

(R/t = 10) the weaker Gauss Seidel smoothing is found to be
optimal in terms of CPU time.

In Table 5 we study the performance of multigrid solver
(MG-GS-ACC) for the case where the coarse mesh represents
the state of plane stress (p =8, g = 1) while the fine mesh
represents 3-D model with (p =8, g = 3). The coarse grid
relaxation parameter defined in Eq. (42) is used for efficient
coarse grid correction. Alternatively, one can recompute and
factorize the stiffness matrix corresponding to g = 1 with a 3-D
constitutive model and then incorporate it for coarse grid
correction. For a relatively small problem considered (12
elements, 2208 dofs for g = 1) no significant difference in terms
of CPU time has been found between the two methods.
Numerical experiments indicate that HBM-ACC is not
particularly well suited for transitioning between different
mathematical models.

Tabie 4. Influence of smoothing procedures of Multigrid-
like solvers. Pinched cylinder modeied with 16 (H2AMS)
elements, Multigrid-like solvers with (4, 6, 8) levels

Soiver GS-1 JPCG-1 ICC
MG-ACC(R/t =10) 37/12 57/17  61/6
HBM-ACC(R/t = 10) 23/10 29/11  32/12
MG-ACC({R/t = 100) 115/43 295/97 110/21
HBM-ACC(R/t = 100) 117/72 157/76 110/58
MG-ACC(R/t = 300) 797/315 1359/445 245/59
HBM-ACC(R/t = 300) 632/412  447/221 310/182

Table 5. Study of Multigrid-like solvers for transitioning

from plane stress to 3-D models. pinched cylinder modeled
with 12 (H3) elements, Multigrid-like solver MG-GS-ACC
with 2 Gauss Seidel smoothing

Element NDOFS Direct 2D-3D Recomputed
H3IRAMS (g=13) 4416 1203 904/55 877/41
H3SOL (q=3) 4416 . 1203 789/48  906/46

Figures 7 and 8 depict the rate of convergence of various
elements for the pinched cylinder and the 3 cylinder assembly
problems respectively. Percentage relative error in the energy
norm is plotted versus the total CPU time required to solve
the problem. SDP quadrature scheme for integration of element
stiffness matrices and the best solution procedure for a given
polynomial order are adopted for all elements. It is evident
that H2AMS and H3RAMS have the best performance in
degenerated and 3-D categories, respectively.

6
Summary and condusions
Research efforts have been made to optimize the computational
efficiency of the p-method for shell analysis. A new quadrature
scheme and a family of hierarachical assumed strain based shell
elements have been introduced. Various linear iterative
procedures have been examined for their suitability to solve
linear system of equations resulting from hierarchic shell
formulation.

In Figs. 9 and 10 we compare h and p versions of finite
element analysis for the two shell problems, a pinched cylinder

Table 3. Effect of radius to thickness (R/t) ratio

Solver: Rie= 10 20 30 100 300 1000 on iterative methods. Pinched cylinder modeled
MG-GS-ACC(4,6,8) 37712 48/16  57/20 115143 797/315 5004/1969 with 16 (H2AMS) elements
HBM-GS-ACC(4,6,8) 3310 3316 3719 117772 632/412 5098/3357

MG-ICC-ACC(4,6.8) 61/6 6577  68/8 110/21 245/59  610N171

HBM-ICC-ACC(4,6, 8) 3212 38/15  45/20 110/58 310/182 862/517

PCG(4,6,8) 148/24  164/36 187/52 425/232 827/458 1953/1329

PCG-ICC s0/22 603  65/42 130/135 258/324 623/860

Direct ja2/l 2421 2421 2421 2421 2421

MG-ICC-ACC(6.8) 1ss/5  158/6  158/6  177/12 235/33  416/98

HBM-ICC-ACC(6.8) 130/7 1349 13912 171/30 271/87  541/238

PCG(6,8) 17112 184/19 200/30 370/133 532/255 1112/481
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RECENT ADVANCES IN THE P-VERSION OF THE FINITE
ELEMENT METHOD FOR SHELLS*

Jacos FisH and Ravi GUTTAL

" Depariment of Civil Engineering and Scientific Computation Research Center.
Rensselaer Polytechnic Institute. Troy. NY [2180. US.A.

Abstract—Research efforts aimed at optimizing the computational efficiency of the p-method uare
descrived. These include (1) a novel quadrature scheme for hierarchical sheil elements. (i) a family of
assumed strain hierarchical shell elements. (i) selective polynomial order escalation for ussumed strain
elements. und (iv) accelerated multigrid-like solution procedures. Numerical experiments indicate that with
these enhancements it is possible to speed up the overall computational time of p-method for analysis
of sheils by a factor greater thun five for relatively small problems (less than 10000 dofs). whiie
computational savings for lurger probiems are ¢ven more significant. It has been found that the
performance of the enhanced variant of the p-method for sheils is comparabie to that of the s-method

for low accuracy requirements. and better if higher accuracies are desired.

{. INTRODUCTION

Since the early seventies there has been a disagree-
ment between various sections in the finite element
community over the computational efficiency of
higher order elements. On one hand there was clear
mathematical evidence on the superior theoretical
rate of convergence (measured in terms of the prob-
lem size) of the p-type methods tor properly designed
meshes.! but on the other hand it was commonly
believed. primarily in the engineering community.
that the h-method is computationally more efficient
due to its superior sparsity. The disagreement has
peaked in the early nineties. For example, in the First
US Congress on Computational Mechanics, Bathe
presented numerical results conducted on Floyd
pressure vessel showing the superior performance in
terms of CPU time of the /s-method even for prob-
lems for which the exact solution is analytic. In the
same conference Carnevali® reported [BM research
division findings on similar problems suggesting
exactly an opposite trend.

In practice computational efficiency of various
finite element versions depends not only on sparsity
and theoretical rate of convergence, but is a function
of several other factors including adaptivity and
quality control, conditioning, distortion sensitivity,
locking, mode! preparation and mode! improvement,
utilization of previous computations and coding sim-
plicity. Ironically, there is no general consensus on
the relative merits of some of these factors. For

* Paper presented at the 3rd National Symposium on
Large-Scale Structural Analysis for High-Performance
Computers and Workstations, held 3-11 November 1994,
Marriott Waterside. Norfolk. VA, U.S.A.

example. it has been argued that for p-type methods
the finite element mesh is simpler. and thus the time
required for data preparation is substantially smaller.
Unfortunately, in automated computational environ-
ment the cost of automatic mesh generation of higher
order elements is not necessarily lower than that of
the h-method.’

The p-method has been commended for its versatil-
ity in the adaptive process due to its ability to exploit
previous computations and the ¢legance of hierarchi-
cal error estimation process.* However. it is often
overlooked that the sequence of lower order finite
element meshes generated in the adaptive process can
be utilized for both solution and quality control
processes by utilizing multigrid technology.®

Contradicting observations were reported regard-
ing the sensitivity to clement distortion. Holzer®
presents experimental results indicating that higher
order elements are less sensitive to mesh distortion.
while Ramm’ in his review article on assumed strain
shell formulation reports that 4-node bilinear sheil
elements are less sensitive to mesh distortion than
their quadratic counterparts.

In the realm of opposing views, there is sound
theoretical evidence on superior conditioning of
matrices arising from orthogonal basis functions,*
and circumvention of locking with higher order
elements.® Nevertheless. since the overall compu-
tational efficiency is strongly linked to the program
architecture, it is not obvious what are the contribut-
ing factors of these aspects.

The literature on the higher order plate elements is
rapidly expanding. For extensive review we refer to
the paper by Szabo and Sahrmann’ and to Refs 6
and 10 for additional references. Application of the
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p-method for general curved shells is quite limited.
To our knowledge only two papers™'' employ a
hierarchical sequence of approximations for curved
shell elements.

The present work focuses on the computational
aspects of the p-version for shell analysis. Qur pri-
mary research efforts focus on enhancing element
level computations. since the cost of analysis in the
p-method is often dominated by the formation of
finite element matrices (as opposed to the A-method.
where the solution process is generally dominant).
The following aspects are studied:

1. How to enhance the performance of shell el-
ements up to the polynomial order of 4-5 using
assumed strain formulation.

How to speed up the computation of element
matrices by utilizing previous computations and
how to exploit hierarchiality of the p-method
via special quadrature scheme.

3. How to reduce the size of the element matrices

bv adaptively selecting higher order modes.'

9

On the system of equations level. the applicability
of the multigrid technology with various acceleration
schemes for thick and thin shells is presented and
compared with the direct solver.

2. HIERARCHICAL ASSUMED STRAIN SHELL ELEMENT
FORMULATION

2.1. Assumed strain formulation

Consider the geometry of a typical quadrilateral
shell element defined by the following relation:

X =41+ )X, &) + (1= E)XPEL € (D)

where X denotes position vector of a generic point of
the shell in the global Cartesian coordinate system,
X*® and X™ are position vectors of the top and
bottom surfaces, respectively. The unit vectors in the
global Cartesian system are denoted by e,. Equation
(1) represents a smooth mapping of a biunit cube into
physical shell domain, with linear interpolation in &,.
&; =0 corresponds to the middle surface of the shell.
[t is common practice to interpolate the bottom and
the top surfaces either using Lagrange polynomials,'
blending functions’ or even Legendre polynomials.®

The displacement field of a higher order plate/shell
theory can be approximated as in’"

=Y Lol unalE &) @

awm}

where f,(§;) in Eq. (2) represents through-the-
thickness variation of the displacement components.
Typically, Legendre polynomials are chosen as basis
functions for in-plane displacement components
43, (8, &;) to ensure numerical stability and hier-
archiality.

The space spanned by hierarchic shape functions is
denoted by S, where p is in-plane polynomial
order of basis functions corresponding to the interp-
olation order of u,, and ¢ (g < p) is the polynomial
order of basis functions in transverse direction ident-
ified with the polynomial order of f,(&;).

Let & represent a Natural Element Curvilinear
coordinate system. Then the covariant basis vectors
a; and their contravariants a’' are defined as follows:

We also consider material Cartesian coordinate
system denoted by x where material properties of
the element are defined. Plane stress assumption for
classical shell theory (¢ = 1) is also exercised in this
coordinate system. Unit basis vectors for the Material
coordinate system are denoted by p;. They are defined
such that, p is perpendicular to mid-surface and p,,
p- are as close as possible to a,. a,."*

The components of strain tensor in the global (E,)
and material (¢,) coordinate systems respectively, are
related by orthogonal transformation

€, =& p)e pIE,= T Ey. (4

Let Ne S be the shape functions obtained using
tensor product of Legendre polynomials,’ then

NMDS NuDS
Up=y N, d' and E,= Y B,,d" (5
A= A=l

where d is the displacement vector representing the
amplitudes of hierarchical modes in global coordinate
sytem: NM DS is the number of modes; lower case
subscripts denote space dimension. while upper case
indices are reserved for mode numbering; B,,, is the
symmetric gradient of the shape functions.

Using Egs (4) and (5) the material strain-displace-
ment relation is denoted by:

NMDS NMDS

€= ) BUd'= Zl (T Bua) 4. (6)
A=l A=

To enhance the element performance primarily at
lower spectral orders assumed strain formulation is
employed. Let (p,q) be the polynomial order of
displacement interpolants, then the polynomial order
of BF: denoted by (y,, 7:,7;) is modified as follows:

p=p -1 ael,2]
M
n=q9-1

where /, is defined as in Ref. 15 to alleviate membrane
and shear locking.

®)

[ = 1 ifk=iorj kell,3]
£~ 10 otherwise.
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Following B-bar nomenclature the enhanced ma-
terial strain field—displacement relation can be con-
veniently cast into the following form:

NMDS _
6= 1 Bid ®

A=l

where BTi can be obtained by interpolating B7Y
between a set of reduced quadrature points.' In the
present work BTy will be obtained by selectively
projecting out higher order modes within the quadra-
ture process (as described in Section 3).

Shell element formulation based on Egs (2-9) will
be referred as H3AMS—Hierarchical (3-D) Assumed
Material Strain element.

In thin shell limit. retention of 3 degrees-of-free-
dom at each node on top and bottom surtaces leads
to large stiffness coefficients for relative displacements
corresponding to shell thickness.'” This leads to de-
terioration of rate of convergence for lower poly-
nomial orders. This phenomenon is especially
prominent when thickness is small compared to in-
plane dimensions. To alleviate this drawback we
propose either to reduce stiffness in the transverse
direction (such element to be referred as H3RAMS).
or to employ hierarchical assumed strain degenerated
shell element formulation with rotational degrees-of-
freedom denoted by H2ZAMS. These two elements are
described in Sections 2.2 and 2.3.

2.2. H3RAMS—hierarchical (3-D) with reduced
transverse stiffness. assumed material strain element

For the purpose of examining the causes of some-
what stiffer behavior of solid based elements com-
pared to their degenerated counterparts (with
rotational dofs), consider a beam problem. For elas-
tic isotropic beam the strain energy is given by,

P

U= j (Dgk* + Dye* + Dsy9) dx (10)
L

| -

where L is the element length: ¢, x. and 7 are the
membrane strain., curvature and transverse shear
strain respectively; Dy, Dy, and Ds are the bending,
membrane and shear stiffness constants given by,

Er’
D3=—‘ D‘W=E[

12

Ds=kGt (1D

where ¢ is the thickness of the beam of a unit width;
E the Young’s modulus; G the shear modulus and k,
the shear correction factor.

In 2-D normal strains are computed directly from
kinematics. These values are not arbitrary and are not
consistent with plane stress condition for thin do-
mains. Thus if two dimensional state of stress is
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considered. the resulting strain energy takes the fol-
lowing form:

-
/

—

U=x| (Dg*+Dye +eDcpt.
2. .
+Dg*+ D dx (12)
where
D = D = 5
Ext—T_L‘ Ds"‘—é—~ De=2Dy D,=Dy
—v-

In curved continuum based flexural elements spuri-
ous coupling between membrane and normal defor-
mation exists giving rise to a parasitic normal strain
energy. which is of the same order of magnitude as
that of the membrane strain energy if the strains are
of equal order. This phenomenon is referred to here
as transverse normal locking of solid based flexural
elements.

To ameliorate the locking caused by transverse
normal strains we propose to calibrate the constitu-
tive behavior of solid based elements to maich the
strain energy corresponding to degenerated clements
without introducing zero energy modes. By this
technique the stiffness coefficients in the constitutive
tensor are modified in the following way:

Dy,=Dy Ds=Dz D=0 D,=yDy (14
where z is a stabilization parameter aimed at stabiliz-
ing the zero transverse normal energy modes of solid
based flexural clements.

2.3, H2AMS—hierarchic (2-D) degenerated assumed
material strain element with rorational degrees -of -
Sfreedom

As a starting point, consider the displacement field
expressed in terms of mid-point translations u! (&, &5)
and mid-point rotations 8,(¢,. &) which are defined
with respect to the fiber coordinate system:

uy uj

2|

1
ubriin T

Uspiiinin =

: [—ef, te{]m_&) {Zl} (19

U IJS

where the unit vectors (¢f,ef,¢}) of the fiber
coordinate system are defined as follows: :

e, X e

ef=e, xe, (16)

6

) XoP . xbo(

& = f= =
t lle; x el

t(Z,.&,) is the thickness of the shell defined as,

= X =X, an
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For the purpose of discussion here, the iso-
parametric shell element discretization is viewed of
consisting of the following two steps:

|. Evaluate the displacement field at the finite
element nodes (;, =3t &, =¢Y) using Eq. (15):

(S;)““(SI {~S: =~.'3~;3)
2 Imerpolate the displacement field using two-
dimensional Lagrangian basis  functions:

(&, 82 35) = VG, Sl (8)).

The extension of this approach to the hierarchical
formulation where degrees-of-freedom are not associ-
ated with the value of the solution at a specific
location within the element is as follows: Instead of
taking a two-step route, the fields w«!(Z,, %) and
0,(Z,. Z,) are directly discretized using the Legendre
polynomials. The resulting solution approximation
takes the following form:

u NMDS uy
Usp = Z N 3H)ud
A=1 “
ty ul
yMDS g PR
+ Y NG :)7-[-[4.» [ef]m,::,{eg}. (13)
A=l - 2

Note that there is a fundamental difference between
Eq. (18) and its iso-parametric counterpart. In the
classical iso-parametric formulation the variable vec-
tor function e/(¢,. &,) in Eq. (18) is replaced by a set
of constant vectors &/(¢{, ¢) representing the fiber
coordinate system at a specified node 4. Conse-
quently the present formulation . gives rise to an
additional term A, in the displacement gradient
evaluation:

u,A
U_____V‘IDS‘}‘V.{(S:I’::) u’l‘
0§, A= ac‘x u;”‘
NMDS TGN (£, E) &
+ 3 [: (& g')g[—te/ tefl+4,
A=1 UC, -'
{
o

and

A.4=N..(cn,é:)"[—”"’”ﬁ),"(’y"} 20)

6, 06,

where x €[1, 2]. Derivatives of ((te/), (re£)) are ob-
tained by differentiation of appropriate mapping
functions.

3. QUADRATURE SCHEME FOR HIERARCHICAL SHELL
ELEMENTS

In this section we present a nearly optimal quadra-
ture scheme for hierarchical systems, which mini-

mizes the number of function evaluations and
eliminates the need for explicit strain interpolation
between reduced and regular quadrature points.

3.1. Dot product integral decomposition

Consider the integral of the form [ g(,, &, &)h
(&1, 5.5,)dQ in the natural coordinate system such
that dQ =d¢&, d¢,dé, and —1 <, < 1. The integral
under consideration may represent a typical stiffness
matrix component, where g is a strain-displacement
matrix component and 4 is a strain-displacement
matrix term multiplied by a Jacobian and a corre-
sponding component of the constitutive tensor. In the
classical Gauss quadrature the integrand (gh) is
implicitly curve fit with a polynomial and then inte-
grated in a close form. It will be shown that for
hierarchical systems it is more efficient to curve fit
separately each term of the integrand (g and /1) with
orthonormal polynomial:

oo w,

a ;
=11 Z PP, (s )P

im0 jm)k=a0  d9

v
= Z ad,(3,. 5.3 (2D
[=

my oy om b '] _,

h=3% Z Z“’" " P(g,)P(s )P.(S5)

seli=0r=l

M
=Y b,0,(3.5:.3) (2D

J=1

where P, are normalized Legendre polynomials.
For convenience, concise notation is introduced with
ar = Qg ¢1(€x’ézy53)apl(§|)P(é VP($5), N =
(m+ D+ D@, +1) and M =(m +)(m+ 1)
(my+1).

Using (21) and (22) the integral of g & can be
decomposed into a dot product of two vectors:

iy

fghdﬂ Sy ¥ J PGB (EIP(E) dQ
Q

(=) j=0k=0

: f hB(E)B(E)P(E) dQ
Q

(23

. .
= z J‘ g¢,dQJ' he,dQ
/=1 Ja a

where [,=min(n, m;) and L =, + N(L+ DL+ 1).

The proof based on orthogonality of Legendre
polynomials was given in Ref. 16 for 1-D problems
and in Ref. 17 for multi-dimensions. In Ref. 16 it has
been shown that the number of function evaluations
required for the dot product integral decomposition
can be reduced by approximately a factor of 2™
compared to the classical Gauss quadrature, where
nsd is the number of space dimensions.
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3.2. Symmerric dot product integral decomposition for

HAMS shell element

In this section we present a variant of Dot product
integral decomposition which preserves the symmetry
of the stiffness matrix. Consider a typical stifness for
HAMS element given by

“ En;mrnﬁr;uzj
__W‘——J

el gahs

kig= dQ. (24)

In an attempt to obtain a symmetric dot product
integral decomposition. we decompose the integrand
(g.hg) as follows:

hi=g, =B} L/ (25)

where L is a lower triangular Cholesky factor of the
constitutive matrix D. The resulting stiffness matrix is
given by

L -
k=T | (LTBT70,/'7dQ
=140

x j L7BI%¢,J' 1 dQ.  (26)
Q .

Each of the two integrals is integrated using Gauss
quadrature. The number of quadrature points as well
as the maximum polynomial order of the interpolat-
ing Legendre polynomials in each direction depends
on how well the integrand L™B™J/!* is approximable
by polynomials and what is their polynomial order.
We will refer to this integration scheme as Symmetric
Dot Product (SDP) Gauss quadrature.

In the case when the constitutive tensor D is not
positive definite an alternative integrand decompo-
sition is employed. Let

g, = BT“T./I M hB - DJI ZBr;ml (27)

which yields

L

kAB= z J BTmrJu:d)IdQ
Q

I=t

e Bmatjl::
x | A= —dQ  (28)
Q D¢l hy

and further dot product integral decomposition of the
second term in (28) yields the following symmetric
form:

L L

ko= 3 Lmrw'wm

[=] /=l

xj 2202, 8 J (BF/')9,dQ. (29)
Q 1 Q

Note that if the constitutive tensor is constant.
D, = [a(D)¢;¢,dQ = Do, reducing Eq. (29) to

L
kg = E [ (Bﬁmrﬂ e,

[=1Ja

xdQ-D- J (BT g, dQ. (30)

Q

It can be easily shown that if D = constant then the
stiffness matrix evaluations by means of Eq. (29) is
more computationally intensive because of the
double summation involved.

The polynomial order of &, = B,(Z)8,(&;)P.(E;) is
chosen to selectively project out higher order terms
from the strain field. By this technique the typical
stiffness matrix term is given by:

k.g=

1
<
i

-

P AT SR TS
-

L/ dQ

—
— e~ =~

h o hoh Bui Bl
Y S' “ BAL
)

rmby=l A=y

-

oY o o
— e~ e~
i i e e S
vt -
— = N e e

-
~

Buo PP (EBE) |
By B(3)PIE)EU(E)

J‘Q Lr | B 0BRGN | figg

Buys B(E)B (EDPUE)

Bl:af’,@x)ﬁ,@:)pk(‘::)

L Blsai’x(§|)13,(::)ﬁk(c—3)

(31

where

B2 = {f)’”(") m (32)

which is consistent with Eqs (7) and (8).
4. SOLUTION PROCEDURES FOR HIERARCHICAL SHELL
FORMULATION

In this section we present two versions of acceler-
ated multigrid method for solving positive definite
systems arising from the p-version discretization of
shells:

Krdn=f; m=12...,level (33)

where’

Rm-l r‘n: {dm—l} {fm-l}
K"= d= f= 34
[ ] & e O
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and m is the level number; K” the stiffness matrix on
the initial level: K™ is of order n,, > n,,_,, where n,,_,
is the order of the block K™~'; d"~'eR™-' and
7 e Rt =m0,

The special feature of the Eq. (34) for shell analysis
is that lower order block K”~' might be different
from the stiffness matrix corresponding to level
(m — 1), denoted as K"~ because of aither

1. Change in constitutive mode! from plane stress
(g=1)w03-D{(g=2).

2. Progressive improvement in geometry or

3. Changing quadrature scheme.

Let Q"' and QJ_, be the restriction and pro-
longation operators. which transfer the data from
level (m) to level (m — 1) and vice versa. For the
p-method it has a very simple form:

nT=0 0l=Qrl /T (33)

where I is the order n,, _, identity matrix, and 0 is
order (n, —n,_,) zero matrix. Note that the restric-
tion of the stiffness matrix is given by:

R' = Qo 'K"Q_, #K" (36)

A single V-cycle has a compuct recursive definition
given by:
" = MGm(r". K" 37

where r” is the residual vector. The V-cycle multigrid
algorithm is summarized below:

. Loop i=0.1.2...
i=0-d"=0
2. Perform 7y, pre-smoothing operations

until convergence if

;@™ = smooth(y, ,‘d", K™, f")

where the left superscript and subscript denote
the cycle number and smoothing count respect-
ively.

3. Restrict residual from level m to m — 1

r- = an l(f"‘ —- Km-“idm)

4. Coarse grid correction
If (m—1)=Ilowest
zm-l = (Km— l)-lrm— l’
Else z*~ ' = MG™"'(r"~!, K"~

5. Prolongate the solution from level m — 1 to m

level, solve

directly

w4 =i+ Q2!

where ‘@ is a coarse grid relaxation parameter,
which minimizes energy functional along the
prescribed direction v" = Q7 _,z"~'. Note that
for two grid methods ‘w =1 if R™"-1=K"-!,

Jacob Fish and Rawvi Guttal

Otherwise

[

— i r(fm -K™. lidm)
h v Ky

(38)

6. Perform ;. post-smoothing operations

'*4d™ = smooth(r,.., . {d", K" ).

A varant of the standard V-cycle multigrid method
has been proposed by Bank, Dupont & Yserentan.'®
This method termed as hierarchical basis multigrid
technique (HBM). is similar to the standard multigrid
V-cycle. except that a smaller than the normal subset
of unknowns is updated during the smoothing phase
at a given level. Schematically. the smoothing process
in HBM takes the following block structure:

=l = smooth(y, ;dr. K7, M) (39)

HBM takes advantage of the fact that smoothing
mainly affects highest oscillatory modes of error. and
thus relaxation sweeps are performed on the block by
block level keeping the rest of the degrees of freedom
fixed. It has been shown that the rate of convergence
of HBM method has a logarithmic dependence on the
problem size as opposed to multigrid method which
has an optimal rate of convergence independent of
the mesh size and spectral order.'® The key question
is whether the benefit from reducing the cost of
smoothing process over weighs the suboptimal per-
formance of HBM in comparison with the standard
muitigrid method for thin and thick shells.

For ill-conditioned problems. such as thin shells, it
is desirable to accelerate the rate of convergence of
the multigrid like methods. In this section we present
a two parameter acceleration scheme that requires a
small fraction of computational effort, but at the
same time is efficient in expediting the convergence of
the multigrid like methods (MG and HBM).

Let v" be the residual vector at the end of i*
m-level multigrid cycle. The incremental multigrid
solution for the next cycle ‘z" = MG™{('r", K™) is used
as a predictor in the two parameter acceleration
scheme. The solution in the correction phase is then
updated as follows:

1+-lv=izlzm+iﬂiv (40)

i+|dm=idm+i+lv (41)

where parameters (‘x, ‘8) are obtained by minimizing
the potential energy functional:

%('dm+i1i2m+':BiV)er(id"+'IiZ""+iﬁiV)

—(d™ + 27" + BY) " —-min (42)
oy
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The resulting algorithm is summarized below:
Step 1.

ﬂdm = 0‘ Orm - Pn

OZ"': = A‘/[G’"(Orl". K'n)

Ov - Oy =0
Ox - Kﬂl\)zm
Oﬁ = 0
)
- (l)xm. Ozm) )
Step 2
Do i=0.1.2... untl convergence

{ii } _ [(IX. izm)
iﬂ - (Ix7 ’V)

i+ 1v = izzzm + ’ﬁ’v

(.1 feem iz 0
(y.v) ('r", v) L=

(43)

'i+ldm=ldm+i+lv
i+ly=:11x+iﬂ1y
i+lrm=irm_i+ly
i+ 12"'2 = .WG»n(N- 'r‘", Km)
i+Ix=Kmu-lzm.

Note that the two parameter acceleration scheme
requires no additional matrix-vector multiplication
and its benefit clearly overshadows the cost involved
in dot product evaluations in Eq. (43) for thin shells.
For alternative acceleration schemes, including PCG
acceleration see Ref. 17.

S. ADAPTIVITY AND QUALITY CONTROL

Both a posteriori error estimation scheme and
adaptive strategy are based on hierarchical spectral
order enrichment. One of the earliest uses of this
approach was by Zienkiewicz and his associates in the
early 1980s.* By this technique given the finite element
solution u”? corresponding to the finite element space
S§»? one can hierarchically enrich the space by
adding certain hierarchical basis functions to the set
already used for @9, If S¥49 is the new space, then
we have the hierarchical decomposition

Swah = Sedg ! (44)
where W' is the subspace which corresponds to the
span of the additional basis functions and !/ is the list
of additional basis functions.

Let the estimated error E=¢f & W' be a linear
combination of basis functions ¢ spanning the sub-
space W', then the unknown coefficients § are ob-
tained by minimization of the energy functional on
the subspace W', that is.

KW + o). (W + ¢B))
~(f v + (bﬁ)~m‘jin (45)

where K and f are the stiffness matrix and the force
vector corresponding to the enriched space $'¢” and
(-. ) denotes the bilinear form given by

(wv)=73 ur,. (46)

j=1

Since the hierarchical basis functions ¢ are typically
highly oscillatory functions with compact support. it
is common practice to approximate the stiffness
matrix corresponding to the subspace W’ by its
diagonal form, which further reduces the cost of
computing the error estimate. By this technique the
error astimate in the energy norm is given by

n 12
|E; = [ > ni} (47
A=l
where
na= %Bzi Ky (48)

and K, is the stiffness coefficient corresponding to
the degree-of-freedom A. n, is termed as an error
indicator which measures the decrease in error of the
solution by adding a particular new degree-of-free-
dom. Adaptive strategy is steered by the magnitude
of the error indicators. At each step we add ail
degrees-of-freedom corresponding to error indi-
cators, such that

N4> Mmax- 49
Parameter ye[0. 1] controls the speed of conver-
gence: if y is zero, then we add all possible degrees-of-
freedom; if y is one, we add none.

Note that this theoretical framework is only valid
as long as the finite element matrices are hierarchical,
that is lower order matrices are sub-matrices of
higher order matrices. Even though solution approxi-
mation is hierarchical the resulting finite element
matrices will not be in the three cases mentioned in
Section 4. :

Our experience indicates that the quality of error
estimators and indicators as well as the efficiency of
adaptive strategy could strongly degrade if the lower
order blocks are ot recomputed in the three cases
mentioned above.
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6. NUMERICAL RESULTS

Qur numerical studies include

1. Comparison of SDP with other popular quadra-
ture schemes.
. Linear solvers for hierarchical systems.
3. Effects of mesh distortion and progressive
change of geometry on hierarchic shell elements.
4. Adaptivity and selective polynomial refinement.

[§9)

A comparison of various quadrature schemes is a
difficult task since they provide different results and
their performance is implementation dependent. Fo-
cusing primarily on the computational efficiency as-
pects and assuming that each quadrature scheme has
been implemented with the optimal efficiency we
comprise the following basis for comparison: Sol-
ution accuracy (measured in terms of error in the
energy norm) vs CPU time required to form a
stiffness matrix of the single element. We will conduct
numerical examples for two problems quarter of each
modeled with a single element: pinched cylinder
(constant in-plane Jacobian) and a frustum of a cone
(variable in-plane Jacobian). All the experiments are
conducted on a Sun Sparc 10 workstation with 128
MB internal memory.

Figures 1—4 show the performance of four types of
shell elements: H2-type (degenerated hierarchic shell
with 3 dofs per mode™) in Fig. 1. H3R-type (hierar-
chic shell element with ¢ = | and reduced stiffness in
transverse normal direction™) in Fig. 2. H3-type

g =2 (hierarchic shell element with quadratic

through the thickness interpolation) in Fig. 3. and

H3-type ¢ =4 (hierarchic shell element with fourth

order through thickness interpolation) in Fig. 4.
Each figure contains four plots:

e {O) HSOL-SDP corresponding to Symmetric
Dot Product Gauss quadrature for displacement
based element.

e (A) HAMS-SDP corresponding to Svmmetric
Dot Product Gauss quadrature for assumed material
strain element.

e (+) HSOL-UNIF corresponding to Uniform
Gauss quadrature scheme for displacement based
element.

e (x) HSOL-HBLOCK corresponding to Hierar-
chic Block Gauss quadrature scheme for displace-
ment based element.

In Uniform quadrature entire stiffness matrix is inte-
grated with the same number of quadrature points.
which is dictated by the maximum polynomial order
of the integrand and does not exploit the hierarchical
structure of the stiffness matrix. A variant of the
Uniform quadrature scheme. which is partially
adapted to take advantage of the hierarchic structure
of the stiffness matrix is labeled as Hierarchic Block"’
quadrature. By this technique submatrices corre-
sponding to different polynomial orders are inte-
grated with an integration rule corresponding to the
maximum polynomial order of the appropriate block.

Relative error (%)
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Fig. 1. Comparison of quadrature schemes for H2-type elements.
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To preserve hierarchical structure of the stiffness examples considered. the number of integration
matrix the displacement based shell element has been  points for Block Gauss quadrature was selected as
over integrated to accommodate for highly varying p™* + 3 in inplane direction and g™ + | in trans-
metric tensor components ¢x,/¢,. For numerical verse direction, where p™ and ¢™" are the maximum

o H2SOL-SDP
x H2SOL-HBLOCK

~ 316k a H2AMS-SDP
°§ + H2SOL-UNIF
=}

§ 100k R/t=100

-2 L=600.0ft
5 R=300.0ft
& 32 E=3.0x10e6

Poisson ratio=0.3

J f=1/L per unit length

L 1.0 (RN SRRl BN RS RAT A T]
T 0.1 1.0 10.0 100.0 1000.0
CPU time (s)
1000 Frustum of a cone under self weight (1 element)
: ? © H2SOL-SDP
E x H2SOL-HBLOCK
» a H2AMS-SDP
E:; nek + H2SOL-UNIF
E E R/=100
2 L H=100.0ft
s R1=100.0ft
3 10.0 ? R2=200.0f
oy E=3.0x10e6
» Poisson ratio=0.3
3.2 Lo v pogpent g o peedd ot 1 eg) SCIfwelgh(=loo'O
0.1 1.0 10.0 100.0 1000.0

CPU time (s)
Fig. 3. Comparison of quadrature schemes for H3-type (¢ =2) clements.
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polynomial orders of the corresponding block in ing Legendre polynomials B.(Z,) is selected as (p, + )
inplane and transverse directions, respectively. ie{l.2] in inplane directions and (g + m) in trans-

Similarly, for SDP-Gauss quadrature applied to  verse direction. The corresponding number of inte-
displacement based elements, the order of interpolat-  gration points are (p;+/+1) and (g +m + 1) in
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Table 1. Comparison of iterative schemes for pinched cylinder (R/¢ = 100) modeled with 16 (HZAMS)
elements. One Gauss Seidel smoothing for multigrid-like soivers

Solver (4.5,6.7.8) (4.6.8) 6.3 (6,7.8)
MG-ACC 262.224/22 203.544:28 147.170/13 174.360/12
HBM-ACC 219.540:49 188.400:42 189.940/25 193.050/26
MG-PCG 265.140/17 271.710/27 319.490/29 296.710/19
HBM-PCG 288.970,44 276.980/42 410.170/56 442.140/61
MG 693.020/56 626.860,83 424.360/38 381.290/34
HBM 2010.420/435 1464.410/314 1037.970/198 1370.230/266
PCG 519.470:177 670.310/154 380.880/33 316.164/171
Direct 456.308. 1 456.308/1 456.308/1 456.508/1

Table 2. Comparison of iterative schemes for three cylinder
assembiy (Rt = 100) modeled with 36 {HZAMS) elements.
One Gauss Seide! smoothing for mulitgrid-like solvers

Solver (4.3.6.7.3) T(4.6.3)
MG-ACC 198.390/8 187.160:12
HBM-ACC 207.180/22 164.740/17
MG-PCG 294.940/9 312.150/135
HBM-PCG 397.180/31 414.690/32
MG 284.990/12 296.060/20
HBM +49.710/50 452.550:50
Direct 1231.440/1 1231.440/1

Table 3. Effect of radius of thickness (R.¢) ratio on iterative methods. Pinched cylinder modeled with 16 (H2AMS) elements

Solver (R:=10) (Rit =20} (Rt =30) (R!t = 100) (Rt =300) (Rt =1000)
MG-ACC (4.6, 9) 60.8/10 83.12/11 73.05/12 203.54/28 1023.6/169 8059.7/1292
HBM-ACC (4,6.38) 32.1/8 49.39/10 53.92/14 188.40:42 1025.8/275 8718.0/2382
PCG 4,6, 8) 216.3/27 295.59/40 294.38/56 670.81,154 1398.6/458 3775.2/1329
Direct 456.3/1 456.31/1 456.31/1 456.31/1 456.31/1 456.31/1
MG-ACC (6. 8) 89.7/4 95.73/5 95.79/5 147.17/13 373.05/50 1969.1;309
HBM-ACC (6. 8) 95.5/6 100.38/7 110.17/9 189.94/25 661.88/122 2259.4/449
PCG (6.3) 228.3/11 241.99/15 255.94/19 380.88/53 722.14/155 1840.0/481

Table 4. Influence of smoothing procedures of multigrid-like solvers. Pinched cylinder modeled with 16 (H2AMS) elements,
multigrid-iike solvers with (4, 6, 8)

Solver GS-1 GS-2 JPCG-1 JPCG-2
MG-ACC (R/t = 100) 203.544/28 211.460/21 754.450/64 705.000/41
HBM-ACC (R/t = 100) 188.400/42 197.833/35 307.480/55 349.930/52
MG-ACC (R/t = 300) 1023.550/169 1030.670/100 3311.800/278 2590.820/149
HBM-ACC (R/t = 300) 1025.740/275 1300.045/230 973.970/175 1009.500/150

Table 5. Study of multigrid-like solvers for transitioning from plane stress to 3-D models. Pinched cylinder
modeled with 12 (H2AMS) elements, muitigrid-like solver MG-ACC with 2 Gauss Seidel smoothing

Element NDOFS Direct 2D-3D Recomputed

H3RAMS (¢ =3) 416 2407.780 1809.54/55 1753.990/41
H3SOL (¢ =3) 4416 2407.780 1578.69/48 1811.140/46
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Fig. 7. Effect of mesh distortion on /- and p-versions of finite element method.

inplane and transverse directions. respectively, where
(p,, p-) are the polynomial orders of the integrand in
inplane directions (¢, 5.) and g is the polynomial
order in transverse direction (&,). Selection of integers

! and m is dictated by the varation of the metric
tensor 0x;/6¢, in inplane and transverse directions
respectively. For example, in case of constant inplane
Jacobian (the pinched cylinder) we used [ =1, m =0
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Fig. 9. Factors enhancing computational efficiency of p-method.

and /=2, m =1 for the case of variable inplane
Jacobian (frustum of the cone).

In case of HAMS elements the order of interpolat-
ing Legendre polynomials is selected such that their
polynomial order does not exceed the maximum
polynomial order of the basis functions to ensure
effectivity of selective polynomial order reduction. On
the other hand for lower order blocks the polynomial
order of Legendre polynomials is selected the same as
for displacement based elements to partially preserve
hierarchiality. Thus the order of Legendre poly-
nomials for HAMS element is defined using the
following rule:

e For a given integrand with polynomial orders

@ q)

The inplane polynomial order of
5 _ )i+l ifp+1<p™
Fi= {p‘““ otherwise . (50)
The order of Legendre polynomials in transverse
direction is selected as ¢ + m.

e The number of inplane integration points is
selected as p™* + 1, and ¢™* + | in transverse
direction.

It is evident from Figs 1-4 that among the
displacement (HSOL) based elements, SDP and
HBLOCK. quadrature schemes are computationally
more efficient than the uniform (UNIF) quad-
rature. The difference between HSOL-SDP and
HSOL-HBLOCK is not significant and it can
be deduced that for displacement based elements
SDP and HBLOCK have a comparable perfor-
mance.

Two problems are considered for investigation of
linear solution procedures, the line pinched cylinder
modeled with 16 elements (2432 dofs) and an assem-
bly of 3 cylinders under dead load modeled with 36
elements (5496.dofs), 12 in each segment as shown in
Fig. 5.

In Tables 1 and 2, various linear iterative solvers
are compared with the direct (LDU) skyline solver.
An attempt to determine the best iterative procedure
for the two problems with radius to thickness ratio
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100 (R, ¢ = 100) has been made. The linear solution
methods considered are:

o MG-ACC Multigrid method with two parameter
acceleration.

e HBM-ACC  Hierarchical Basis  Multigrid
method with two parameter acceleration.

e MG-PCG Multigrid method with PCG acceler-
ation.

e HBM-PCG Hierarchical Basis Multigrid method
with PCG acceleration.

o MG Multigrid method.

o HBM Hierarchical Basis Multigrid method.

e PCG Pre-conditioned Conjugate Gradient
méthod with Block Preconditioner.

e Direct LDU skvline solver.

The columns in Tables | and 2 represent ditferent
levels employed in the iterative procedure. For
example (4.6.8) has 3 levels for mulugrid-like
solvers. the coarse level corresponding to polynomial
order 4 and the finest level being polynomial order 8.
For the PCG solver. the same notation implies that
the preconditioner has 3 blocks corresponding to
polynomial orders (1—). (5.6) and (7.3). For the
direct solution of the coarse grid stiffness matrix the
modes are numbered to minimize the skyline profile.
This is accomplished by using the connectivity be-
tween topological entities (vertices, edges and faces)
as a basis for mode numbering. '

It is apparent from Tables | and 2 that MG-ACC
and HBM-ACC are most efficient iterative solvers
among the various iterative solution procedures com-
pared. For the smaller problem with 16 elements
(2432 dofs) the most efficient iterative solver has been
found to be 3 times faster than the direct soiver, and
for a moderately larger problem with 36 elements
(5496 dofs) this factor has been increased to 7.5. This
ratio is likely to increase for larger problems as long
as the thickness to span ratio is not decreased.

On the other hand it can be inferred from Table 3
that as the radius to thickness (R/¢) ratio becomes
larger the performance of the iterative procedures
deteriorates, due to increase in the condition number.
Assuming that deterioration in conditioning does not
affect the accuracy of direct solution due to round off
errors, the direct solver has outperformed the itera-
tive procedures for very thin shells (R/r = 300) and
(R/t = 1000).

In Tabie 4 the influence of various popular smooth-
ing procedures (GS—Gauss Seidel and JPCG—
Jacobi pre-conditioned conjugate gradient) on the
performance multigrid-like sotvers (MG-ACC and
HBM-ACC) is examined. The influence of number of
smoothing iterations is also studied. The experiments
are conducted on the line pinched cylinder problem
modeled with 16 elements with R/t =100 and
R/t = 300. For either of the multigrid procedures one
Gauss Seidel (GS-1) smoothing has been found to be
optimal in term of CPU time.

Figure 5 depicts the rate of convergence of various
elements for the pinched cylinder and the 3 cylinder
assembly problems. Percentage relative error in the
energyv norm is plotted vs the total CPU time required
to solve the problem. SDP quadrature scheme for
integration of element stiffness matrices and the best
solution procedure for a given polynomial order are
adopted for all elements. It is evident that H2ZAMS
and H3AMS have the best performance in degener-
ated and 3-D categories, respectively.

In Table 5 we study the performance of multigrid
solver (MG-ACC) for the case where the coarse mesh
represents the state of plane stress (p =8.4 =1)
while the fine mesh represents 3-D model with
(p =8.¢ =3). The coarse grid relaxation parameter
is used for efficient coarse grid correction. Alterna-
tively. one can recompute and factorize the stiffness
matrix corresponding to ¢ = I with a 3-D constitutive
model and then incorporate it for a coarse grid
correction. For u-relatively small problem considered
(12 clements. 2203 dofs for ¢ =1) no significant
difference in terms of CPU time has been found
berween the two methods. Numerical experiments
indicate that HBM-ACC is not particularly well
studied for transitioning between different math-
ematical models.

A comparison of rate of convergence for ¢lements
with progressive geometry and fixed geometry is
depicted in Fig. 6. Progressive geometry mapping 1s
carried out using Lagrange polynomials. the order of
the Lagrange polynomials match that of the interp-
olation functions. Blending mapping functions are
used for fixed geometry mapping. It is well known
that for lower order elements the super-parametric
formulation degrades the element performance. since
the rigid body modes are not represented exactly. It
can be seen that for higher order elements both
approaches possess similar convergence.

The effect of mesh distortion is shown in Fig. 7. It
is evident that mesh distortion degrades the perform-
ance of both p- and h-versions of finite element
method, although the p-version was found to be
somewhat less sensitive to mesh distortion.

The influence of selective polynomial escalation is
studied in Fig. 8. For all numerical examples con-
sidered the value of parameter y in Eq. (49) was
selected between 0.01 and 0.02. In general selective
polynomial escalation leads to higher rates of conver-
gence.

7. SUMMARY, CONCLUSIONS AND FUTURE WORK

Research efforts have been made to optimize the
computational efficiency of the p-method for shell
analysis. A new quadrature scheme and a family of
hierarchical assumed strain based shell elements have
been introduced. Various linear iterative procedures
have been examined for their suitability to solve
linear system of equations resulting from hierarchic
shell formulation. The key factors enhancing the
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efficiency of 4 and p versions of finite element method.

computational efficiency of the p-method are sum-
marized in Fig. 9 in chronological order for the
problems considered. It can be seen that even for a
small problem (2944 dofs) a reduction of the total
CPU time by a factor of 6.85 has been achieved. For
a relatively large problem of 3 cylinder assembly this
factor increases to 8.8.

Considerable speed up can be obtained using par-
allet architectures. All the element level computations
including dot product integral decomposition as well
as selective polynomial order escalation are com-
pletely parallelizable. The multigrid like methods
require evaluation of inner products, matrix-vector
products and factorization of coarse level stiffness
matrix. The latter is bottleneck to parailelism, and
thus in a parallel computing environment, it may be
more efficient to evaluate approximation to it."”

In Fig. 10 we compare #- and p-versions of finite
element analysis for the two shell problems, line
pinched cylinder and an assembly of 3 cylinders with
a square cut out in each cylinder. Assumed strain
elements, 9 node ANS for 4-method® and H2AMS
for p-method, have been used. Relative error in
energy norm is plotted vs the total CPU time. For the
reference solution, 96 and 64 element meshes with
p =8 have been considered for the 3 cylinder assem-
bly and pinched cylinder problems respectively. Both
h- and p-methods have comparable performance,
although the p-method with relatively larger number
of elements (16 elements for line pinched cylinder and
216 for 3 cylinder assembly) and lower maximum
polynomial order p™* < 4 seems to perform better

than a more traditional approach with smaller
number of elements but larger maximum polynomial
order (p™* < 8). Nevertheless. the differences are
insignificant. and thus. superiority claims on the basis
of the few problems considered in the paper are
premature.

Future research efforts will be concentrated in the
following five areas:

1. Develop a priori (based on estimated condition-
ing™!) and a posteriori (based on the perform-
ance of iterative process™) estimators aimed at
predicting optimal solution procedures and
their strategy.

2. Reducing the sensitivity of iterative solvers to
thickness/span ratio by isolating and solving
directly bending dominated lower frequency
behavior.

3. Study of h~p assumed strain formulation for
shells with selective polynomial order escala-
tion.

4. Extension of hierarchical shell formulation to

laminated composites.

Developement of pre- and post-processing

capabilities for higher order hierarchical shell

elements.

W
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